問題4は、中学校の3年生の生徒が航空機の機体工場に見学に行った生徒についてまとめた内容です。生徒の総数は110人で、見学に行った人数は行かなかった人数より10人多いです。見学に行った人数を$x$人、行かなかった人数を$y$人として、連立方程式を作る問題です。ただし、連立方程式を解く必要はありません。

代数学連立方程式方程式の立式文章問題
2025/4/9

1. 問題の内容

問題4は、中学校の3年生の生徒が航空機の機体工場に見学に行った生徒についてまとめた内容です。生徒の総数は110人で、見学に行った人数は行かなかった人数より10人多いです。見学に行った人数をxx人、行かなかった人数をyy人として、連立方程式を作る問題です。ただし、連立方程式を解く必要はありません。

2. 解き方の手順

* 生徒の総数に関する方程式: 見学に行った人数と行かなかった人数の合計は110人なので、以下の式が成り立ちます。
x+y=110x + y = 110
* 見学に行った人数と行かなかった人数の差に関する方程式: 見学に行った人数は行かなかった人数より10人多いので、以下の式が成り立ちます。
x=y+10x = y + 10
または、
xy=10x - y = 10

3. 最終的な答え

連立方程式は以下のようになります。
x+y=110x + y = 110
xy=10x - y = 10

「代数学」の関連問題

原価$x$円の品物に、$p$割の利益を見込んで定価をつけた。100個販売したところ、売り上げの合計は6000円であった。この条件を表す式を導き出す問題です。

方程式文章問題利益割合
2025/6/15

与えられた方程式 $4(2+x) = 8 - 3x$ を解いて、$x$の値を求める問題です。

一次方程式方程式の解法代数
2025/6/15

与えられた連立方程式を解く問題です。連立方程式は以下の通りです。 $ \begin{cases} \frac{x}{2} + \frac{y}{8} = 1 \\ y = 2x - 16 \end{c...

連立方程式代入法一次方程式
2025/6/15

$\frac{\pi}{2} < \alpha < \pi$ で、$\cos\alpha = -\frac{\sqrt{5}}{3}$ のとき、$\sin2\alpha$, $\cos2\alpha$...

三角関数加法定理倍角の公式
2025/6/15

$\tan \alpha = 2$、$\tan \beta = 3$ のとき、$\tan(\alpha + \beta)$ の値を求める問題です。

三角関数加法定理tan計算
2025/6/15

与えられた4次多項式 $P(x) = ax^4 + (b-a)x^3 + (1-2ab)x^2 + (ab-10)x + 2ab$ について、以下の問いに答える問題です。 (1) $P(x)$ が $...

多項式因数分解剰余の定理代数
2025/6/15

(1) 関数 $y = x^4 - 6x^2 + 10$ の最小値を求める。 (2) $-1 \leq x \leq 2$ のとき、関数 $y = (x^2 - 2x - 1)^2 - 6(x^2 -...

関数の最大・最小二次関数平方完成変域
2025/6/15

この問題は、絶対値を含む方程式と不等式を解く問題です。 (1) $|x+4|=2$ (2) $|x-3|<5$ (3) $|x-2|\ge 1$

絶対値方程式不等式一次不等式
2025/6/15

与えられた2次方程式 $x^2 - 4x - 2 = 0$ の2つの解を $a, b$ (ただし $a < b$)とする。 (1) $a$ と $b$ の値をそれぞれ求める。 (2) $a^2 + b...

二次方程式解の公式絶対値不等式解と係数の関係
2025/6/15

次の絶対値を含む方程式と不等式を解きます。 (1) $|x| = 2$ (2) $|x| < 2$ (3) $|x| > 4$ (4) $|x| \le 4$

絶対値方程式不等式解法
2025/6/15