$\tan \alpha = 2$、$\tan \beta = 3$ のとき、$\tan(\alpha + \beta)$ の値を求める問題です。

代数学三角関数加法定理tan計算
2025/6/15

1. 問題の内容

tanα=2\tan \alpha = 2tanβ=3\tan \beta = 3 のとき、tan(α+β)\tan(\alpha + \beta) の値を求める問題です。

2. 解き方の手順

tan(α+β)\tan(\alpha + \beta) の加法定理を用います。
加法定理は以下の通りです。
tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}
tanα=2\tan \alpha = 2tanβ=3\tan \beta = 3 を上記の式に代入します。
tan(α+β)=2+31(2)(3)=516=55=1\tan(\alpha + \beta) = \frac{2 + 3}{1 - (2)(3)} = \frac{5}{1 - 6} = \frac{5}{-5} = -1

3. 最終的な答え

-1

「代数学」の関連問題

数列 $2 \cdot 3, 3 \cdot 4, 4 \cdot 5, 5 \cdot 6, \dots$ の一般項を求める問題です。

数列一般項式の展開
2025/6/15

数列 $1 \cdot 2, 2 \cdot 4, 3 \cdot 6, 4 \cdot 8, \dots$ の初項から第 $n$ 項までの和を求めます。

数列シグマ級数等差数列公式
2025/6/15

数列 $1\cdot 2, 2\cdot 4, 3\cdot 6, 4\cdot 8, \dots$ の初項から第 $n$ 項までの和 $S_n$ を求めよ。

数列級数シグマ公式
2025/6/15

与えられた等式を指定された文字について解く問題です。 (1) $y = ax$ を $a$ について解く。 (3) $x + y = 6$ を $x$ について解く。

方程式文字式の計算解く
2025/6/15

与えられた等式を指定された文字について解く問題です。 (1) $l = 2(a+b)$ を $a$ について解きます。 (2) $4x + 2y = 1$ を $y$ について解きます。

方程式式の変形文字式の計算
2025/6/15

ある中学校の生徒について、1年生の生徒数が全体の $\frac{1}{3}$ である。2年生と3年生の生徒数の比が $5:6$ であるとき、1年生の生徒数を $a$ 人、2年生の生徒数を $b$ 人と...

分数方程式文字式の計算
2025/6/15

与えられた問題は、総和の計算です。具体的には、$\sum_{k=1}^{n} (k+1)(2k-1)$ を計算します。

総和シグマ公式多項式
2025/6/15

与えられた数式の総和を計算します。数式は $\sum_{k=1}^{n-1} (4k+7)$ です。

数列シグマ総和代数計算
2025/6/15

与えられた数列の和を計算します。具体的には、$\sum_{k=1}^{n} (5k+4)$ を求めます。

数列シグマ公式
2025/6/15

関数 $f(x) = 16 \cdot 9^x - 4 \cdot 3^{x+2} - 3^{-x+2} + 9^{-x}$ が与えられています。$t = 4 \cdot 3^x + 3^{-x}$ ...

指数関数対数関数相加相乗平均方程式解の個数
2025/6/15