問題は、次の2つの式を展開することです。 (1) $(x - y)^2(x^2 + xy + y^2)^2$ (2) $(a + b + c)^3$代数学展開多項式2025/4/101. 問題の内容問題は、次の2つの式を展開することです。(1) (x−y)2(x2+xy+y2)2(x - y)^2(x^2 + xy + y^2)^2(x−y)2(x2+xy+y2)2(2) (a+b+c)3(a + b + c)^3(a+b+c)32. 解き方の手順(1) (x−y)2(x2+xy+y2)2(x - y)^2(x^2 + xy + y^2)^2(x−y)2(x2+xy+y2)2を展開する。まず、(x−y)2(x - y)^2(x−y)2を展開する。(x−y)2=x2−2xy+y2(x - y)^2 = x^2 - 2xy + y^2(x−y)2=x2−2xy+y2次に、(x2+xy+y2)2(x^2 + xy + y^2)^2(x2+xy+y2)2を展開する。(x2+xy+y2)2=(x2+xy+y2)(x2+xy+y2)(x^2 + xy + y^2)^2 = (x^2 + xy + y^2)(x^2 + xy + y^2)(x2+xy+y2)2=(x2+xy+y2)(x2+xy+y2)=x4+x3y+x2y2+x3y+x2y2+xy3+x2y2+xy3+y4= x^4 + x^3y + x^2y^2 + x^3y + x^2y^2 + xy^3 + x^2y^2 + xy^3 + y^4=x4+x3y+x2y2+x3y+x2y2+xy3+x2y2+xy3+y4=x4+2x3y+3x2y2+2xy3+y4= x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + y^4=x4+2x3y+3x2y2+2xy3+y4したがって、(x−y)2(x2+xy+y2)2=(x2−2xy+y2)(x4+2x3y+3x2y2+2xy3+y4)(x - y)^2(x^2 + xy + y^2)^2 = (x^2 - 2xy + y^2)(x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + y^4)(x−y)2(x2+xy+y2)2=(x2−2xy+y2)(x4+2x3y+3x2y2+2xy3+y4)=x6+2x5y+3x4y2+2x3y3+x2y4−2x5y−4x4y2−6x3y3−4x2y4−2xy5+x4y2+2x3y3+3x2y4+2xy5+y6= x^6 + 2x^5y + 3x^4y^2 + 2x^3y^3 + x^2y^4 - 2x^5y - 4x^4y^2 - 6x^3y^3 - 4x^2y^4 - 2xy^5 + x^4y^2 + 2x^3y^3 + 3x^2y^4 + 2xy^5 + y^6=x6+2x5y+3x4y2+2x3y3+x2y4−2x5y−4x4y2−6x3y3−4x2y4−2xy5+x4y2+2x3y3+3x2y4+2xy5+y6=x6+(2x5y−2x5y)+(3x4y2−4x4y2+x4y2)+(2x3y3−6x3y3+2x3y3)+(x2y4−4x2y4+3x2y4)+(−2xy5+2xy5)+y6= x^6 + (2x^5y - 2x^5y) + (3x^4y^2 - 4x^4y^2 + x^4y^2) + (2x^3y^3 - 6x^3y^3 + 2x^3y^3) + (x^2y^4 - 4x^2y^4 + 3x^2y^4) + (-2xy^5 + 2xy^5) + y^6=x6+(2x5y−2x5y)+(3x4y2−4x4y2+x4y2)+(2x3y3−6x3y3+2x3y3)+(x2y4−4x2y4+3x2y4)+(−2xy5+2xy5)+y6=x6−x4y2−2x3y3+0x2y4+y6= x^6 - x^4y^2 - 2x^3y^3 + 0x^2y^4 + y^6=x6−x4y2−2x3y3+0x2y4+y6=x6−x4y2−2x3y3+y6= x^6 - x^4y^2 - 2x^3y^3 + y^6=x6−x4y2−2x3y3+y6ここで、x3−y3=(x−y)(x2+xy+y2)x^3 - y^3 = (x-y)(x^2+xy+y^2)x3−y3=(x−y)(x2+xy+y2)に注意すると(x−y)2(x2+xy+y2)2=[(x−y)(x2+xy+y2)]2=(x3−y3)2=x6−2x3y3+y6(x - y)^2(x^2 + xy + y^2)^2 = [(x-y)(x^2+xy+y^2)]^2 = (x^3-y^3)^2 = x^6 - 2x^3y^3 + y^6(x−y)2(x2+xy+y2)2=[(x−y)(x2+xy+y2)]2=(x3−y3)2=x6−2x3y3+y6.(2) (a+b+c)3(a + b + c)^3(a+b+c)3を展開する。(a+b+c)3=((a+b)+c)3(a + b + c)^3 = ((a + b) + c)^3(a+b+c)3=((a+b)+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3= (a + b)^3 + 3(a + b)^2c + 3(a + b)c^2 + c^3=(a+b)3+3(a+b)2c+3(a+b)c2+c3=(a3+3a2b+3ab2+b3)+3(a2+2ab+b2)c+3(a+b)c2+c3= (a^3 + 3a^2b + 3ab^2 + b^3) + 3(a^2 + 2ab + b^2)c + 3(a + b)c^2 + c^3=(a3+3a2b+3ab2+b3)+3(a2+2ab+b2)c+3(a+b)c2+c3=a3+3a2b+3ab2+b3+3a2c+6abc+3b2c+3ac2+3bc2+c3= a^3 + 3a^2b + 3ab^2 + b^3 + 3a^2c + 6abc + 3b^2c + 3ac^2 + 3bc^2 + c^3=a3+3a2b+3ab2+b3+3a2c+6abc+3b2c+3ac2+3bc2+c3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc= a^3 + b^3 + c^3 + 3a^2b + 3a^2c + 3b^2a + 3b^2c + 3c^2a + 3c^2b + 6abc=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc=a3+b3+c3+3(a2b+a2c+b2a+b2c+c2a+c2b)+6abc= a^3 + b^3 + c^3 + 3(a^2b + a^2c + b^2a + b^2c + c^2a + c^2b) + 6abc=a3+b3+c3+3(a2b+a2c+b2a+b2c+c2a+c2b)+6abc3. 最終的な答え(1) x6−2x3y3+y6x^6 - 2x^3y^3 + y^6x6−2x3y3+y6(2) a3+b3+c3+3(a2b+a2c+b2a+b2c+c2a+c2b)+6abca^3 + b^3 + c^3 + 3(a^2b + a^2c + b^2a + b^2c + c^2a + c^2b) + 6abca3+b3+c3+3(a2b+a2c+b2a+b2c+c2a+c2b)+6abcまたはa3+b3+c3+3(a+b)(b+c)(c+a)a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)a3+b3+c3+3(a+b)(b+c)(c+a)