余弦定理を変形した式 $2bc \cos A = b^2 + c^2 - a^2$ の両辺を $2bc$ で割った式を求める。

幾何学余弦定理三角比三角形公式
2025/3/13

1. 問題の内容

余弦定理を変形した式 2bccosA=b2+c2a22bc \cos A = b^2 + c^2 - a^2 の両辺を 2bc2bc で割った式を求める。

2. 解き方の手順

与えられた式 2bccosA=b2+c2a22bc \cos A = b^2 + c^2 - a^2 の両辺を 2bc2bc で割る。
2bccosA2bc=b2+c2a22bc\frac{2bc \cos A}{2bc} = \frac{b^2 + c^2 - a^2}{2bc}
左辺は 2bc2bc が約分されて cosA\cos A となる。
右辺はそのまま。
よって、
cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}

3. 最終的な答え

cosA=b2+c2a22bc\cos A = \frac{b^2+c^2-a^2}{2bc}

「幾何学」の関連問題

長さ2の線分OAを直径とする円の任意の接線に、Oから下ろした垂線とその接線の交点をPとする。Oを極、半直線OAを始線としたときの点Pの軌跡の極方程式を求める。

軌跡極方程式接線垂線
2025/4/17

円 $x^2 + y^2 = 10$ と直線 $y = 3x$ の共有点の座標を求めます。

直線共有点連立方程式
2025/4/17

楕円 $x^2 + 2y^2 = 2$ を $C$ とおく。傾き $m$ の直線 $y = mx + 3$ を $l$ とおく。 (1) $C$ と $l$ が共有点をもたないような $m$ の値の範...

楕円直線共有点距離判別式最大値最小値
2025/4/17

問題は、三角関数の式を与えられた条件のもとで、$r\sin(\theta + \alpha)$ の形に変換することです。ここで、$r > 0$ かつ $-\pi < \alpha < \pi$ です。...

三角関数三角関数の合成
2025/4/17

辺BCを斜辺とする直角三角形ABCがあり、∠B = 30°, AC = 1とする。辺AB上にAD = 1となる点Dをとり、点Dを通るBCに垂直な直線とBCの交点をHとする。このとき、∠BCD, BD,...

直角三角形三角比角度辺の長さ三角関数の加法定理sin15cos15
2025/4/17

点A(4, -2)と点B(-2, 6)を通る直線 $l$ について、以下の3つの問いに答える。 (1) 直線 $l$ の方程式を求める。 (2) 原点Oと直線 $l$ の距離を求める。 (3) 三角形...

直線方程式距離面積ベクトル
2025/4/17

2点A$(a, b)$, B$(b, a)$が直線$y = x$に関して対称であることを示す。ただし、$a \neq b$とする。

座標平面対称性直線中点傾き
2025/4/17

2直線 $ax + by + c = 0$ と $a'x + b'y + c' = 0$ について、以下の2つの命題を証明する問題です。ただし、$b \neq 0$ かつ $b' \neq 0$としま...

直線平行垂直傾き方程式証明
2025/4/17

2直線 $3x - 4y + 5 = 0$ と $2x + y - 4 = 0$ の交点を通る直線の方程式を求める問題です。 (1) 直線 $2x + 3y = 0$ に平行な直線の方程式を求めます。...

直線交点平行垂直方程式
2025/4/17

4点A(1, 1), B(4, 3), C(2, 6), Dを頂点とする平行四辺形ABCDについて、次の点を求めます。 (1) 対角線ACの中点M (2) 頂点D

平行四辺形座標中点ベクトル
2025/4/17