以下の公式を利用します。
* ∑k=1nc=nc (cは定数) * ∑k=1nk=2n(n+1) * ∑k=1nk2=6n(n+1)(2n+1) * ∑k=1nk3=(2n(n+1))2 それぞれの問題について、まず総和の記号の中身を展開し、上記の公式を用いて計算します。
(1) ∑k=1n(2k+3)=2∑k=1nk+∑k=1n3=2⋅2n(n+1)+3n=n(n+1)+3n=n2+4n (2) ∑k=1n(k2+k)=∑k=1nk2+∑k=1nk=6n(n+1)(2n+1)+2n(n+1)=6n(n+1)(2n+1+3)=6n(n+1)(2n+4)=3n(n+1)(n+2) (3) ∑k=1n(k2−6k+5)=∑k=1nk2−6∑k=1nk+∑k=1n5=6n(n+1)(2n+1)−6⋅2n(n+1)+5n=6n(n+1)(2n+1)−3n(n+1)+5n=6n(n+1)(2n+1)−18n(n+1)+30n=6n(2n2+3n+1−18n−18+30)=6n(2n2−15n+13) (4) ∑k=1n(k3−4k)=∑k=1nk3−4∑k=1nk=(2n(n+1))2−4⋅2n(n+1)=4n2(n+1)2−2n(n+1)=4n2(n+1)2−8n(n+1)=4n(n+1)(n(n+1)−8)=4n(n+1)(n2+n−8) (5) ∑k=1n(k+1)(k−2)=∑k=1n(k2−k−2)=∑k=1nk2−∑k=1nk−∑k=1n2=6n(n+1)(2n+1)−2n(n+1)−2n=6n(n+1)(2n+1)−3n(n+1)−12n=6n(2n2+3n+1−3n−3−12)=6n(2n2−14)=3n(n2−7) (6) ∑k=1n−1(k2−5k)=∑k=1n−1k2−5∑k=1n−1k=6(n−1)n(2(n−1)+1)−5⋅2(n−1)n=6(n−1)n(2n−1)−25(n−1)n=6(n−1)n(2n−1−15)=6(n−1)n(2n−16)=3(n−1)n(n−8)