複素数の計算問題です。$\left( \frac{1+i}{1-\sqrt{3}i} \right)^6$ を計算します。代数学複素数複素数の計算ド・モアブルの定理極形式2025/3/141. 問題の内容複素数の計算問題です。(1+i1−3i)6\left( \frac{1+i}{1-\sqrt{3}i} \right)^6(1−3i1+i)6 を計算します。2. 解き方の手順まずは、1+i1−3i\frac{1+i}{1-\sqrt{3}i}1−3i1+iを計算します。分母を実数化するために、分母の共役複素数である1+3i1+\sqrt{3}i1+3iを分母分子にかけます。1+i1−3i=(1+i)(1+3i)(1−3i)(1+3i)\frac{1+i}{1-\sqrt{3}i} = \frac{(1+i)(1+\sqrt{3}i)}{(1-\sqrt{3}i)(1+\sqrt{3}i)}1−3i1+i=(1−3i)(1+3i)(1+i)(1+3i)=1+3i+i+3i212−(3i)2=1+3i+i−31+3= \frac{1+\sqrt{3}i+i+\sqrt{3}i^2}{1^2 - (\sqrt{3}i)^2} = \frac{1+\sqrt{3}i+i-\sqrt{3}}{1+3}=12−(3i)21+3i+i+3i2=1+31+3i+i−3=(1−3)+(3+1)i4=1−34+3+14i= \frac{(1-\sqrt{3})+(\sqrt{3}+1)i}{4} = \frac{1-\sqrt{3}}{4} + \frac{\sqrt{3}+1}{4}i=4(1−3)+(3+1)i=41−3+43+1i次に、1−34+3+14i\frac{1-\sqrt{3}}{4} + \frac{\sqrt{3}+1}{4}i41−3+43+1i を極形式に変換します。r=(1−34)2+(3+14)2=1−23+316+3+23+116=816=12=12r = \sqrt{\left(\frac{1-\sqrt{3}}{4}\right)^2 + \left(\frac{\sqrt{3}+1}{4}\right)^2} = \sqrt{\frac{1-2\sqrt{3}+3}{16} + \frac{3+2\sqrt{3}+1}{16}} = \sqrt{\frac{8}{16}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}r=(41−3)2+(43+1)2=161−23+3+163+23+1=168=21=21cosθ=1−3412=2(1−3)4=2−64\cos \theta = \frac{\frac{1-\sqrt{3}}{4}}{\frac{1}{\sqrt{2}}} = \frac{\sqrt{2}(1-\sqrt{3})}{4} = \frac{\sqrt{2}-\sqrt{6}}{4}cosθ=2141−3=42(1−3)=42−6sinθ=3+1412=2(3+1)4=6+24\sin \theta = \frac{\frac{\sqrt{3}+1}{4}}{\frac{1}{\sqrt{2}}} = \frac{\sqrt{2}(\sqrt{3}+1)}{4} = \frac{\sqrt{6}+\sqrt{2}}{4}sinθ=2143+1=42(3+1)=46+2よって、θ=2π3\theta = \frac{2\pi}{3}θ=32πしたがって、1+i1−3i=12(cos5π12+isin5π12)\frac{1+i}{1-\sqrt{3}i} = \frac{1}{\sqrt{2}} (\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12})1−3i1+i=21(cos125π+isin125π)ド・モアブルの定理より、(1+i1−3i)6=(12)6(cos(6⋅5π12)+isin(6⋅5π12))\left( \frac{1+i}{1-\sqrt{3}i} \right)^6 = \left( \frac{1}{\sqrt{2}} \right)^6 \left( \cos \left( 6 \cdot \frac{5\pi}{12} \right) + i \sin \left( 6 \cdot \frac{5\pi}{12} \right) \right) (1−3i1+i)6=(21)6(cos(6⋅125π)+isin(6⋅125π))=18(cos5π2+isin5π2)=18(cosπ2+isinπ2)=18(0+i)=18i= \frac{1}{8} \left( \cos \frac{5\pi}{2} + i \sin \frac{5\pi}{2} \right) = \frac{1}{8} \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = \frac{1}{8}(0+i) = \frac{1}{8}i=81(cos25π+isin25π)=81(cos2π+isin2π)=81(0+i)=81i別の方法として、1+i=2(cos(π4)+isin(π4))=2eiπ41 + i = \sqrt{2} (\cos (\frac{\pi}{4}) + i \sin (\frac{\pi}{4})) = \sqrt{2} e^{i \frac{\pi}{4}}1+i=2(cos(4π)+isin(4π))=2ei4π1−3i=2(cos(−π3)+isin(−π3))=2e−iπ31 - \sqrt{3}i = 2 (\cos (-\frac{\pi}{3}) + i \sin (-\frac{\pi}{3})) = 2 e^{-i \frac{\pi}{3}}1−3i=2(cos(−3π)+isin(−3π))=2e−i3π1+i1−3i=2eiπ42e−iπ3=22ei(π4+π3)=12ei7π12\frac{1+i}{1-\sqrt{3}i} = \frac{\sqrt{2} e^{i \frac{\pi}{4}}}{2 e^{-i \frac{\pi}{3}}} = \frac{\sqrt{2}}{2} e^{i (\frac{\pi}{4} + \frac{\pi}{3})} = \frac{1}{\sqrt{2}} e^{i \frac{7\pi}{12}}1−3i1+i=2e−i3π2ei4π=22ei(4π+3π)=21ei127π(1+i1−3i)6=(12)6ei7π12⋅6=18ei7π2=18(cos(7π2)+isin(7π2))=18(0−i)=−i8\left( \frac{1+i}{1-\sqrt{3}i} \right)^6 = \left( \frac{1}{\sqrt{2}} \right)^6 e^{i \frac{7\pi}{12} \cdot 6} = \frac{1}{8} e^{i \frac{7\pi}{2}} = \frac{1}{8} (\cos (\frac{7\pi}{2}) + i \sin (\frac{7\pi}{2})) = \frac{1}{8} (0 - i) = -\frac{i}{8}(1−3i1+i)6=(21)6ei127π⋅6=81ei27π=81(cos(27π)+isin(27π))=81(0−i)=−8i3. 最終的な答え−i8-\frac{i}{8}−8i