Given that $x$ and $y$ are elements of $[0, \frac{\pi}{2}]$ such that $\sin x = \frac{\sqrt{6} + \sqrt{2}}{4}$ and $\cos y = \frac{\sqrt{3}}{2}$. We need to: 1. Verify that $(\frac{\sqrt{6} + \sqrt{2}}{4})^2 = \frac{2 - \sqrt{3}}{4}$.

TrigonometryTrigonometric IdentitiesInverse TrigonometryAngle Addition/Subtraction FormulasExact Values
2025/4/14

1. Problem Description

Given that xx and yy are elements of [0,π2][0, \frac{\pi}{2}] such that sinx=6+24\sin x = \frac{\sqrt{6} + \sqrt{2}}{4} and cosy=32\cos y = \frac{\sqrt{3}}{2}.
We need to:

1. Verify that $(\frac{\sqrt{6} + \sqrt{2}}{4})^2 = \frac{2 - \sqrt{3}}{4}$.

2. Calculate $\cos x$ and $\sin y$. Determine the value of $y$.

3. Calculate $\cos(x+y)$ and $\sin(x+y)$.

4. Calculate $\cos(x-y)$ and $\sin(x-y)$. Deduce the value of $x$.

2. Solution Steps

1. Verification:

(6+24)2=(6+2)242=6+212+216=8+24316=8+4316=2+34(\frac{\sqrt{6} + \sqrt{2}}{4})^2 = \frac{(\sqrt{6} + \sqrt{2})^2}{4^2} = \frac{6 + 2\sqrt{12} + 2}{16} = \frac{8 + 2\sqrt{4 \cdot 3}}{16} = \frac{8 + 4\sqrt{3}}{16} = \frac{2 + \sqrt{3}}{4}.
However, we need to verify (6+24)2=234(\frac{\sqrt{6} + \sqrt{2}}{4})^2 = \frac{2 - \sqrt{3}}{4}. We made a mistake here. It seems the problem statement has a typo. It should be (624)2=234(\frac{\sqrt{6} - \sqrt{2}}{4})^2 = \frac{2-\sqrt{3}}{4}.
(624)2=(62)216=6212+216=84316=234(\frac{\sqrt{6} - \sqrt{2}}{4})^2 = \frac{(\sqrt{6} - \sqrt{2})^2}{16} = \frac{6 - 2\sqrt{12} + 2}{16} = \frac{8 - 4\sqrt{3}}{16} = \frac{2 - \sqrt{3}}{4}. So the given equation needs correction. We proceed with sinx=6+24\sin x = \frac{\sqrt{6} + \sqrt{2}}{4}.

2. Calculate $\cos x$ and $\sin y$:

Since x[0,π2]x \in [0, \frac{\pi}{2}], cosx=1sin2x=1(6+24)2=12+34=234=232\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - (\frac{\sqrt{6} + \sqrt{2}}{4})^2} = \sqrt{1 - \frac{2 + \sqrt{3}}{4}} = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{\sqrt{2 - \sqrt{3}}}{2}.
Since cosy=32\cos y = \frac{\sqrt{3}}{2} and y[0,π2]y \in [0, \frac{\pi}{2}], y=π6y = \frac{\pi}{6} (or 30 degrees).
Then siny=1cos2y=1(32)2=134=14=12\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - (\frac{\sqrt{3}}{2})^2} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}.

3. Calculate $\cos(x+y)$ and $\sin(x+y)$:

cos(x+y)=cosxcosysinxsiny=(232)(32)(6+24)(12)=32346+28\cos(x+y) = \cos x \cos y - \sin x \sin y = (\frac{\sqrt{2 - \sqrt{3}}}{2})(\frac{\sqrt{3}}{2}) - (\frac{\sqrt{6} + \sqrt{2}}{4})(\frac{1}{2}) = \frac{\sqrt{3}\sqrt{2 - \sqrt{3}}}{4} - \frac{\sqrt{6} + \sqrt{2}}{8}.
sin(x+y)=sinxcosy+cosxsiny=(6+24)(32)+(232)(12)=18+68+234=32+68+234\sin(x+y) = \sin x \cos y + \cos x \sin y = (\frac{\sqrt{6} + \sqrt{2}}{4})(\frac{\sqrt{3}}{2}) + (\frac{\sqrt{2 - \sqrt{3}}}{2})(\frac{1}{2}) = \frac{\sqrt{18} + \sqrt{6}}{8} + \frac{\sqrt{2 - \sqrt{3}}}{4} = \frac{3\sqrt{2} + \sqrt{6}}{8} + \frac{\sqrt{2 - \sqrt{3}}}{4}.

4. Calculate $\cos(x-y)$ and $\sin(x-y)$:

cos(xy)=cosxcosy+sinxsiny=(232)(32)+(6+24)(12)=3234+6+28\cos(x-y) = \cos x \cos y + \sin x \sin y = (\frac{\sqrt{2 - \sqrt{3}}}{2})(\frac{\sqrt{3}}{2}) + (\frac{\sqrt{6} + \sqrt{2}}{4})(\frac{1}{2}) = \frac{\sqrt{3}\sqrt{2 - \sqrt{3}}}{4} + \frac{\sqrt{6} + \sqrt{2}}{8}.
sin(xy)=sinxcosycosxsiny=(6+24)(32)(232)(12)=18+68234=32+68234\sin(x-y) = \sin x \cos y - \cos x \sin y = (\frac{\sqrt{6} + \sqrt{2}}{4})(\frac{\sqrt{3}}{2}) - (\frac{\sqrt{2 - \sqrt{3}}}{2})(\frac{1}{2}) = \frac{\sqrt{18} + \sqrt{6}}{8} - \frac{\sqrt{2 - \sqrt{3}}}{4} = \frac{3\sqrt{2} + \sqrt{6}}{8} - \frac{\sqrt{2 - \sqrt{3}}}{4}.
We know that sinx=6+24=2(3+1)4=223+12\sin x = \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{\sqrt{2}(\sqrt{3} + 1)}{4} = \frac{\sqrt{2}}{2} \frac{\sqrt{3} + 1}{2}. We also know that sin5π12=sin(75)=sin(45+30)=sin45cos30+cos45sin30=2232+2212=6+24\sin \frac{5\pi}{12} = \sin (75^{\circ}) = \sin (45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ} = \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}. Thus x=5π12x = \frac{5\pi}{12}.

3. Final Answer

1. $(\frac{\sqrt{6} + \sqrt{2}}{4})^2 = \frac{2 + \sqrt{3}}{4}$

2. $\cos x = \frac{\sqrt{2 - \sqrt{3}}}{2}$, $\sin y = \frac{1}{2}$, $y = \frac{\pi}{6}$

3. $\cos(x+y) = \frac{\sqrt{3}\sqrt{2 - \sqrt{3}}}{4} - \frac{\sqrt{6} + \sqrt{2}}{8}$, $\sin(x+y) = \frac{3\sqrt{2} + \sqrt{6}}{8} + \frac{\sqrt{2 - \sqrt{3}}}{4}$

4. $\cos(x-y) = \frac{\sqrt{3}\sqrt{2 - \sqrt{3}}}{4} + \frac{\sqrt{6} + \sqrt{2}}{8}$, $\sin(x-y) = \frac{3\sqrt{2} + \sqrt{6}}{8} - \frac{\sqrt{2 - \sqrt{3}}}{4}$, $x = \frac{5\pi}{12}$

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14