The problem consists of two parts. 1. Prove that $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$. $x$ is a real number, not an integer multiple of $\frac{\pi}{2}$.

TrigonometryTrigonometric IdentitiesTrigonometric SimplificationsincosAngle Addition/Subtraction FormulasDouble Angle Formulas
2025/4/14

1. Problem Description

The problem consists of two parts.

1. Prove that $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$. $x$ is a real number, not an integer multiple of $\frac{\pi}{2}$.

2. Express the following expressions in terms of $cos2x$:

a) sin3xsinx+cos3xcosx\frac{sin3x}{sinx} + \frac{cos3x}{cosx}
b) sin5xsinxcos5xcosx\frac{sin5x}{sinx} - \frac{cos5x}{cosx}

2. Solution Steps

1. Prove $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$

We can combine the terms on the left side by finding a common denominator:
sin3xsinxcos3xcosx=sin3xcosxcos3xsinxsinxcosx\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = \frac{sin3xcosx - cos3xsinx}{sinxcosx}
Using the trigonometric identity sin(AB)=sinAcosBcosAsinBsin(A-B) = sinAcosB - cosAsinB, we have:
sin3xcosxcos3xsinxsinxcosx=sin(3xx)sinxcosx=sin2xsinxcosx\frac{sin3xcosx - cos3xsinx}{sinxcosx} = \frac{sin(3x-x)}{sinxcosx} = \frac{sin2x}{sinxcosx}
Using the trigonometric identity sin2x=2sinxcosxsin2x = 2sinxcosx, we have:
sin2xsinxcosx=2sinxcosxsinxcosx=2\frac{sin2x}{sinxcosx} = \frac{2sinxcosx}{sinxcosx} = 2
Therefore, sin3xsinxcos3xcosx=2\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2.

2. Express in terms of $cos2x$

a) sin3xsinx+cos3xcosx\frac{sin3x}{sinx} + \frac{cos3x}{cosx}
sin3xsinx+cos3xcosx=sin3xcosx+cos3xsinxsinxcosx\frac{sin3x}{sinx} + \frac{cos3x}{cosx} = \frac{sin3xcosx + cos3xsinx}{sinxcosx}
Using the trigonometric identity sin(A+B)=sinAcosB+cosAsinBsin(A+B) = sinAcosB + cosAsinB, we have:
sin3xcosx+cos3xsinxsinxcosx=sin(3x+x)sinxcosx=sin4xsinxcosx\frac{sin3xcosx + cos3xsinx}{sinxcosx} = \frac{sin(3x+x)}{sinxcosx} = \frac{sin4x}{sinxcosx}
Since sin4x=2sin2xcos2x=4sinxcosxcos2xsin4x = 2sin2xcos2x = 4sinxcosxcos2x, we have:
sin4xsinxcosx=4sinxcosxcos2xsinxcosx=4cos2x\frac{sin4x}{sinxcosx} = \frac{4sinxcosxcos2x}{sinxcosx} = 4cos2x
b) sin5xsinxcos5xcosx\frac{sin5x}{sinx} - \frac{cos5x}{cosx}
sin5xsinxcos5xcosx=sin5xcosxcos5xsinxsinxcosx\frac{sin5x}{sinx} - \frac{cos5x}{cosx} = \frac{sin5xcosx - cos5xsinx}{sinxcosx}
Using the trigonometric identity sin(AB)=sinAcosBcosAsinBsin(A-B) = sinAcosB - cosAsinB, we have:
sin5xcosxcos5xsinxsinxcosx=sin(5xx)sinxcosx=sin4xsinxcosx\frac{sin5xcosx - cos5xsinx}{sinxcosx} = \frac{sin(5x-x)}{sinxcosx} = \frac{sin4x}{sinxcosx}
Since sin4x=2sin2xcos2x=4sinxcosxcos2xsin4x = 2sin2xcos2x = 4sinxcosxcos2x, we have:
sin4xsinxcosx=4sinxcosxcos2xsinxcosx=4cos2x\frac{sin4x}{sinxcosx} = \frac{4sinxcosxcos2x}{sinxcosx} = 4cos2x

3. Final Answer

1. $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$

2. a) $\frac{sin3x}{sinx} + \frac{cos3x}{cosx} = 4cos2x$

b) sin5xsinxcos5xcosx=4cos2x\frac{sin5x}{sinx} - \frac{cos5x}{cosx} = 4cos2x

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14