The problem consists of two parts. 1. Prove that $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$. $x$ is a real number, not an integer multiple of $\frac{\pi}{2}$.
TrigonometryTrigonometric IdentitiesTrigonometric SimplificationsincosAngle Addition/Subtraction FormulasDouble Angle Formulas
2025/4/14
1. Problem Description
The problem consists of two parts.
1. Prove that $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$. $x$ is a real number, not an integer multiple of $\frac{\pi}{2}$.
2. Express the following expressions in terms of $cos2x$:
a)
b)
2. Solution Steps
1. Prove $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$
We can combine the terms on the left side by finding a common denominator:
Using the trigonometric identity , we have:
Using the trigonometric identity , we have:
Therefore, .
2. Express in terms of $cos2x$
a)
Using the trigonometric identity , we have:
Since , we have:
b)
Using the trigonometric identity , we have:
Since , we have:
3. Final Answer
1. $\frac{sin3x}{sinx} - \frac{cos3x}{cosx} = 2$
2. a) $\frac{sin3x}{sinx} + \frac{cos3x}{cosx} = 4cos2x$
b)