与えられた式 $\frac{1}{x+1} - \frac{1}{x-1} + \frac{2x+1}{x^3-1}$ を簡単にせよ。代数学式の計算分数式因数分解通分式変形2025/4/151. 問題の内容与えられた式 1x+1−1x−1+2x+1x3−1\frac{1}{x+1} - \frac{1}{x-1} + \frac{2x+1}{x^3-1}x+11−x−11+x3−12x+1 を簡単にせよ。2. 解き方の手順まず、x3−1x^3 - 1x3−1 を因数分解します。x3−1=(x−1)(x2+x+1)x^3 - 1 = (x-1)(x^2+x+1)x3−1=(x−1)(x2+x+1)次に、与えられた式を通分します。共通の分母は (x+1)(x−1)(x2+x+1)(x+1)(x-1)(x^2+x+1)(x+1)(x−1)(x2+x+1) です。1x+1−1x−1+2x+1x3−1=1x+1−1x−1+2x+1(x−1)(x2+x+1)\frac{1}{x+1} - \frac{1}{x-1} + \frac{2x+1}{x^3-1} = \frac{1}{x+1} - \frac{1}{x-1} + \frac{2x+1}{(x-1)(x^2+x+1)}x+11−x−11+x3−12x+1=x+11−x−11+(x−1)(x2+x+1)2x+1=(x−1)(x2+x+1)(x+1)(x−1)(x2+x+1)−(x+1)(x2+x+1)(x+1)(x−1)(x2+x+1)+(2x+1)(x+1)(x+1)(x−1)(x2+x+1)= \frac{(x-1)(x^2+x+1)}{(x+1)(x-1)(x^2+x+1)} - \frac{(x+1)(x^2+x+1)}{(x+1)(x-1)(x^2+x+1)} + \frac{(2x+1)(x+1)}{(x+1)(x-1)(x^2+x+1)}=(x+1)(x−1)(x2+x+1)(x−1)(x2+x+1)−(x+1)(x−1)(x2+x+1)(x+1)(x2+x+1)+(x+1)(x−1)(x2+x+1)(2x+1)(x+1)分子を展開します。=x3−1(x+1)(x−1)(x2+x+1)−(x+1)(x2+x+1)(x+1)(x−1)(x2+x+1)+2x2+3x+1(x+1)(x−1)(x2+x+1)= \frac{x^3 - 1}{(x+1)(x-1)(x^2+x+1)} - \frac{(x+1)(x^2+x+1)}{(x+1)(x-1)(x^2+x+1)} + \frac{2x^2+3x+1}{(x+1)(x-1)(x^2+x+1)}=(x+1)(x−1)(x2+x+1)x3−1−(x+1)(x−1)(x2+x+1)(x+1)(x2+x+1)+(x+1)(x−1)(x2+x+1)2x2+3x+1=x3−1−(x3+x2+x+x2+x+1)+2x2+3x+1(x+1)(x−1)(x2+x+1)= \frac{x^3 - 1 - (x^3+x^2+x+x^2+x+1) + 2x^2+3x+1}{(x+1)(x-1)(x^2+x+1)}=(x+1)(x−1)(x2+x+1)x3−1−(x3+x2+x+x2+x+1)+2x2+3x+1=x3−1−x3−2x2−2x−1+2x2+3x+1(x+1)(x−1)(x2+x+1)= \frac{x^3 - 1 - x^3 - 2x^2 - 2x - 1 + 2x^2+3x+1}{(x+1)(x-1)(x^2+x+1)}=(x+1)(x−1)(x2+x+1)x3−1−x3−2x2−2x−1+2x2+3x+1分子を整理します。=x−1(x+1)(x−1)(x2+x+1)= \frac{x - 1}{(x+1)(x-1)(x^2+x+1)}=(x+1)(x−1)(x2+x+1)x−1(x−1)(x-1)(x−1)を約分します。=1(x+1)(x2+x+1)= \frac{1}{(x+1)(x^2+x+1)}=(x+1)(x2+x+1)1(x+1)(x2+x+1)(x+1)(x^2+x+1)(x+1)(x2+x+1)を展開します。=1x3+x2+x+x2+x+1= \frac{1}{x^3 + x^2 + x + x^2 + x + 1}=x3+x2+x+x2+x+11=1x3+2x2+2x+1= \frac{1}{x^3 + 2x^2 + 2x + 1}=x3+2x2+2x+113. 最終的な答え1x3+2x2+2x+1\frac{1}{x^3 + 2x^2 + 2x + 1}x3+2x2+2x+11