与えられた曲線上の点Aにおける接線と法線の方程式を求める問題です。 (1) $y^2 = -8x$, A(-2, -4)における接線と法線の方程式を求めます。 (2) $\frac{x^2}{4} + \frac{y^2}{12} = 1$, A(-1, 3)における接線と法線の方程式を求めます。 (3) $\frac{x^2}{4} - \frac{y^2}{3} = 1$, A(4, 3)における接線と法線の方程式を求めます。
2025/4/15
1. 問題の内容
与えられた曲線上の点Aにおける接線と法線の方程式を求める問題です。
(1) , A(-2, -4)における接線と法線の方程式を求めます。
(2) , A(-1, 3)における接線と法線の方程式を求めます。
(3) , A(4, 3)における接線と法線の方程式を求めます。
2. 解き方の手順
(1) 曲線 について
まず、両辺をで微分します。
点A(-2, -4)における傾きは、
接線の方程式は、
法線の方程式は、傾きが-1なので、
(2) 曲線 について
両辺をで微分します。
点A(-1, 3)における傾きは、
接線の方程式は、
法線の方程式は、傾きが-1なので、
(3) 曲線 について
両辺をで微分します。
点A(4, 3)における傾きは、
接線の方程式は、
法線の方程式は、傾きがなので、
3. 最終的な答え
(1) 接線:, 法線:
(2) 接線:, 法線:
(3) 接線:, 法線: