We are asked to solve several trigonometric equations and prove some trigonometric identities. (a) Solve $\cos(2\theta) = \sin(\theta)$. (b) Solve $2\cos(6y) + 11\cos(6y)\sin(3y) = 0$. (c) Solve $4\sin^2(3t) - 3\sin(3t) = 1$. (d) Prove $\tan(\alpha + \beta)$. (e) Find $\tan(2\alpha)$.

TrigonometryTrigonometric EquationsTrigonometric IdentitiesTrigonometric Functions
2025/3/14

1. Problem Description

We are asked to solve several trigonometric equations and prove some trigonometric identities.
(a) Solve cos(2θ)=sin(θ)\cos(2\theta) = \sin(\theta).
(b) Solve 2cos(6y)+11cos(6y)sin(3y)=02\cos(6y) + 11\cos(6y)\sin(3y) = 0.
(c) Solve 4sin2(3t)3sin(3t)=14\sin^2(3t) - 3\sin(3t) = 1.
(d) Prove tan(α+β)\tan(\alpha + \beta).
(e) Find tan(2α)\tan(2\alpha).

2. Solution Steps

(a) cos(2θ)=sin(θ)\cos(2\theta) = \sin(\theta).
We know cos(2θ)=12sin2(θ)\cos(2\theta) = 1 - 2\sin^2(\theta), so
12sin2(θ)=sin(θ)1 - 2\sin^2(\theta) = \sin(\theta)
2sin2(θ)+sin(θ)1=02\sin^2(\theta) + \sin(\theta) - 1 = 0
(2sin(θ)1)(sin(θ)+1)=0(2\sin(\theta) - 1)(\sin(\theta) + 1) = 0
So sin(θ)=12\sin(\theta) = \frac{1}{2} or sin(θ)=1\sin(\theta) = -1.
If sin(θ)=12\sin(\theta) = \frac{1}{2}, then θ=π6+2πk\theta = \frac{\pi}{6} + 2\pi k or θ=5π6+2πk\theta = \frac{5\pi}{6} + 2\pi k for integer kk.
If sin(θ)=1\sin(\theta) = -1, then θ=3π2+2πk\theta = \frac{3\pi}{2} + 2\pi k for integer kk.
(b) 2cos(6y)+11cos(6y)sin(3y)=02\cos(6y) + 11\cos(6y)\sin(3y) = 0
cos(6y)(2+11sin(3y))=0\cos(6y)(2 + 11\sin(3y)) = 0
So cos(6y)=0\cos(6y) = 0 or 2+11sin(3y)=02 + 11\sin(3y) = 0.
If cos(6y)=0\cos(6y) = 0, then 6y=π2+πk6y = \frac{\pi}{2} + \pi k for integer kk, so y=π12+π6ky = \frac{\pi}{12} + \frac{\pi}{6}k.
If 2+11sin(3y)=02 + 11\sin(3y) = 0, then sin(3y)=211\sin(3y) = -\frac{2}{11}. Let 3y=arcsin(211)3y = \arcsin(-\frac{2}{11}).
3y=arcsin(211)+2πk3y = \arcsin(-\frac{2}{11}) + 2\pi k or 3y=πarcsin(211)+2πk=π+arcsin(211)+2πk3y = \pi - \arcsin(-\frac{2}{11}) + 2\pi k = \pi + \arcsin(\frac{2}{11}) + 2\pi k.
So y=13arcsin(211)+2π3ky = \frac{1}{3}\arcsin(-\frac{2}{11}) + \frac{2\pi}{3}k or y=π3+13arcsin(211)+2π3ky = \frac{\pi}{3} + \frac{1}{3}\arcsin(\frac{2}{11}) + \frac{2\pi}{3}k.
(c) 4sin2(3t)3sin(3t)=14\sin^2(3t) - 3\sin(3t) = 1
4sin2(3t)3sin(3t)1=04\sin^2(3t) - 3\sin(3t) - 1 = 0
(4sin(3t)+1)(sin(3t)1)=0(4\sin(3t) + 1)(\sin(3t) - 1) = 0
So sin(3t)=14\sin(3t) = -\frac{1}{4} or sin(3t)=1\sin(3t) = 1.
If sin(3t)=14\sin(3t) = -\frac{1}{4}, then 3t=arcsin(14)+2πk3t = \arcsin(-\frac{1}{4}) + 2\pi k or 3t=πarcsin(14)+2πk=π+arcsin(14)+2πk3t = \pi - \arcsin(-\frac{1}{4}) + 2\pi k = \pi + \arcsin(\frac{1}{4}) + 2\pi k.
So t=13arcsin(14)+2π3kt = \frac{1}{3}\arcsin(-\frac{1}{4}) + \frac{2\pi}{3}k or t=π3+13arcsin(14)+2π3kt = \frac{\pi}{3} + \frac{1}{3}\arcsin(\frac{1}{4}) + \frac{2\pi}{3}k.
If sin(3t)=1\sin(3t) = 1, then 3t=π2+2πk3t = \frac{\pi}{2} + 2\pi k, so t=π6+2π3kt = \frac{\pi}{6} + \frac{2\pi}{3}k.
(d) tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}
Proof:
tan(α+β)=sin(α+β)cos(α+β)=sinαcosβ+cosαsinβcosαcosβsinαsinβ\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta}.
Divide both numerator and denominator by cosαcosβ\cos\alpha\cos\beta:
tan(α+β)=sinαcosβcosαcosβ+cosαsinβcosαcosβcosαcosβcosαcosβsinαsinβcosαcosβ=sinαcosα+sinβcosβ1sinαcosαsinβcosβ=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \frac{\frac{\sin\alpha\cos\beta}{\cos\alpha\cos\beta} + \frac{\cos\alpha\sin\beta}{\cos\alpha\cos\beta}}{\frac{\cos\alpha\cos\beta}{\cos\alpha\cos\beta} - \frac{\sin\alpha\sin\beta}{\cos\alpha\cos\beta}} = \frac{\frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta}}{1 - \frac{\sin\alpha}{\cos\alpha}\frac{\sin\beta}{\cos\beta}} = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}.
(e) tan(2α)=tan(α+α)=tanα+tanα1tanαtanα=2tanα1tan2α\tan(2\alpha) = \tan(\alpha + \alpha) = \frac{\tan\alpha + \tan\alpha}{1 - \tan\alpha\tan\alpha} = \frac{2\tan\alpha}{1 - \tan^2\alpha}

3. Final Answer

(a) θ=π6+2πk\theta = \frac{\pi}{6} + 2\pi k, θ=5π6+2πk\theta = \frac{5\pi}{6} + 2\pi k, θ=3π2+2πk\theta = \frac{3\pi}{2} + 2\pi k for integer kk.
(b) y=π12+π6ky = \frac{\pi}{12} + \frac{\pi}{6}k, y=13arcsin(211)+2π3ky = \frac{1}{3}\arcsin(-\frac{2}{11}) + \frac{2\pi}{3}k, y=π3+13arcsin(211)+2π3ky = \frac{\pi}{3} + \frac{1}{3}\arcsin(\frac{2}{11}) + \frac{2\pi}{3}k for integer kk.
(c) t=13arcsin(14)+2π3kt = \frac{1}{3}\arcsin(-\frac{1}{4}) + \frac{2\pi}{3}k, t=π3+13arcsin(14)+2π3kt = \frac{\pi}{3} + \frac{1}{3}\arcsin(\frac{1}{4}) + \frac{2\pi}{3}k, t=π6+2π3kt = \frac{\pi}{6} + \frac{2\pi}{3}k for integer kk.
(d) tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}
(e) tan(2α)=2tanα1tan2α\tan(2\alpha) = \frac{2\tan\alpha}{1 - \tan^2\alpha}

Related problems in "Trigonometry"

We are asked to simplify the expression $\frac{2 \tan 60^{\circ} + \cos 30^{\circ}}{\sin 60^{\circ}}...

TrigonometryTrigonometric IdentitiesSimplification
2025/4/21

The problem asks us to evaluate several trigonometric expressions: a. $sin(390^\circ)$ b. $cos(\frac...

TrigonometryTrigonometric FunctionsSineCosineTangentAngle ReductionUnit Circle
2025/4/19

We are asked to prove the trigonometric identity $\sin^4 A - \cos^4 A = 2\sin^2 A - 1$.

Trigonometric IdentitiesPythagorean IdentityDifference of SquaresAlgebraic Manipulation
2025/4/15

We are given the equation $\cos(4x) = \sin(x)$ and we need to solve it in the interval $[-\frac{\pi}...

Trigonometric EquationsTrigonometric IdentitiesSolving EquationsIntervalSineCosineRoots
2025/4/14

We need to prove two trigonometric identities. 1. $\frac{2 + \sin 2x - 2 \cos 2x}{1 + 3 \sin^2 x - \...

Trigonometric IdentitiesDouble Angle FormulasHalf Angle FormulasTrigonometric Simplification
2025/4/14

The problem asks us to solve several trigonometric equations in $\mathbb{R}$ and represent the solut...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolving Equations
2025/4/14

We are asked to solve the following trigonometric equations in $R$ and represent the solutions on th...

Trigonometric EquationsUnit CircleTrigonometric IdentitiesSolutions
2025/4/14

The problem is divided into three parts: 1. Show that $cos(5x) = cos(x)(16cos^4(x) - 20cos^2(x) + 5)...

Trigonometric IdentitiesMultiple Angle FormulasTrigonometric EquationsSolving Equations
2025/4/14

The problem asks to prove that $16 \sin(\frac{\pi}{24}) \sin(\frac{5\pi}{24}) \sin(\frac{7\pi}{24}) ...

Trigonometric IdentitiesTrigonometric FunctionsProduct-to-Sum FormulasAngle Sum and Difference Identities
2025/4/14

Exercise 22 is asking us to solve a series of problems. First, we need to show that $\sin(5x) = 16\s...

Trigonometric IdentitiesTrigonometric EquationsSine FunctionRoots of Equations
2025/4/14