We are asked to solve several trigonometric equations and prove some trigonometric identities. (a) Solve $\cos(2\theta) = \sin(\theta)$. (b) Solve $2\cos(6y) + 11\cos(6y)\sin(3y) = 0$. (c) Solve $4\sin^2(3t) - 3\sin(3t) = 1$. (d) Prove $\tan(\alpha + \beta)$. (e) Find $\tan(2\alpha)$.
2025/3/14
1. Problem Description
We are asked to solve several trigonometric equations and prove some trigonometric identities.
(a) Solve .
(b) Solve .
(c) Solve .
(d) Prove .
(e) Find .
2. Solution Steps
(a) .
We know , so
So or .
If , then or for integer .
If , then for integer .
(b)
So or .
If , then for integer , so .
If , then . Let .
or .
So or .
(c)
So or .
If , then or .
So or .
If , then , so .
(d)
Proof:
.
Divide both numerator and denominator by :
.
(e)
3. Final Answer
(a) , , for integer .
(b) , , for integer .
(c) , , for integer .
(d)
(e)