与えられた式を展開する。代数学式の展開多項式因数分解乗法公式2025/4/16承知いたしました。画像にある問題のうち、以下の問題を解きます。(1) (x−y)2(x+y)2(x2+y2)2(x-y)^2(x+y)^2(x^2+y^2)^2(x−y)2(x+y)2(x2+y2)2(2) (x+1)(x−1)(x−2)(x−4)(x+1)(x-1)(x-2)(x-4)(x+1)(x−1)(x−2)(x−4)(3) (a−b+c)2(a+b−c)2(a-b+c)^2(a+b-c)^2(a−b+c)2(a+b−c)2(4) (a+b+c)(a2+b2+c2−ab−bc−ca)(a+b+c)(a^2+b^2+c^2-ab-bc-ca)(a+b+c)(a2+b2+c2−ab−bc−ca)(5) (a−1)3(a2+a+1)3(a-1)^3(a^2+a+1)^3(a−1)3(a2+a+1)3(6) (x−1)(x+1)(x4+x2+1)(x-1)(x+1)(x^4+x^2+1)(x−1)(x+1)(x4+x2+1)1. 問題の内容与えられた式を展開する。2. 解き方の手順(1) (x−y)2(x+y)2(x2+y2)2(x-y)^2(x+y)^2(x^2+y^2)^2(x−y)2(x+y)2(x2+y2)2まず、(x−y)(x+y)=x2−y2(x-y)(x+y) = x^2 - y^2(x−y)(x+y)=x2−y2 であることを利用します。よって、(x−y)2(x+y)2=[(x−y)(x+y)]2=(x2−y2)2(x-y)^2(x+y)^2 = [(x-y)(x+y)]^2 = (x^2-y^2)^2(x−y)2(x+y)2=[(x−y)(x+y)]2=(x2−y2)2(x2−y2)2=x4−2x2y2+y4(x^2-y^2)^2 = x^4 - 2x^2y^2 + y^4(x2−y2)2=x4−2x2y2+y4(x4−2x2y2+y4)(x2+y2)2=(x4−2x2y2+y4)(x4+2x2y2+y4)=(x4+y4−2x2y2)(x4+y4+2x2y2)=(x4+y4)2−(2x2y2)2(x^4 - 2x^2y^2 + y^4)(x^2+y^2)^2 = (x^4 - 2x^2y^2 + y^4)(x^4+2x^2y^2+y^4) = (x^4 + y^4 - 2x^2y^2)(x^4 + y^4 + 2x^2y^2) = (x^4+y^4)^2 - (2x^2y^2)^2(x4−2x2y2+y4)(x2+y2)2=(x4−2x2y2+y4)(x4+2x2y2+y4)=(x4+y4−2x2y2)(x4+y4+2x2y2)=(x4+y4)2−(2x2y2)2(x4+y4)2−(2x2y2)2=x8+2x4y4+y8−4x4y4=x8−2x4y4+y8(x^4+y^4)^2 - (2x^2y^2)^2 = x^8 + 2x^4y^4 + y^8 - 4x^4y^4 = x^8 - 2x^4y^4 + y^8(x4+y4)2−(2x2y2)2=x8+2x4y4+y8−4x4y4=x8−2x4y4+y8(2) (x+1)(x−1)(x−2)(x−4)(x+1)(x-1)(x-2)(x-4)(x+1)(x−1)(x−2)(x−4)(x+1)(x−1)=x2−1(x+1)(x-1) = x^2 - 1(x+1)(x−1)=x2−1(x−2)(x−4)=x2−6x+8(x-2)(x-4) = x^2 - 6x + 8(x−2)(x−4)=x2−6x+8(x2−1)(x2−6x+8)=x4−6x3+8x2−x2+6x−8=x4−6x3+7x2+6x−8(x^2-1)(x^2-6x+8) = x^4 - 6x^3 + 8x^2 - x^2 + 6x - 8 = x^4 - 6x^3 + 7x^2 + 6x - 8(x2−1)(x2−6x+8)=x4−6x3+8x2−x2+6x−8=x4−6x3+7x2+6x−8(3) (a−b+c)2(a+b−c)2(a-b+c)^2(a+b-c)^2(a−b+c)2(a+b−c)2[(a−(b−c))(a+(b−c))]2=(a2−(b−c)2)2=(a2−(b2−2bc+c2))2=(a2−b2+2bc−c2)2[(a-(b-c))(a+(b-c))]^2 = (a^2 - (b-c)^2)^2 = (a^2 - (b^2 - 2bc + c^2))^2 = (a^2 - b^2 + 2bc - c^2)^2[(a−(b−c))(a+(b−c))]2=(a2−(b−c)2)2=(a2−(b2−2bc+c2))2=(a2−b2+2bc−c2)2(a2−b2−c2+2bc)2=(a2−(b2+c2−2bc))2=(a2−(b−c)2)2(a^2 - b^2 - c^2 + 2bc)^2 = (a^2 - (b^2+c^2-2bc))^2 = (a^2 - (b-c)^2)^2(a2−b2−c2+2bc)2=(a2−(b2+c2−2bc))2=(a2−(b−c)2)2=(a2)2−2a2(b−c)2+(b−c)4=a4−2a2(b2−2bc+c2)+(b2−2bc+c2)2=a4−2a2b2+4a2bc−2a2c2+(b4+4b2c2+c4−4b3c−4bc3+2b2c2)=(a^2)^2 - 2a^2(b-c)^2 + (b-c)^4 = a^4 - 2a^2(b^2 - 2bc + c^2) + (b^2 - 2bc + c^2)^2 = a^4 - 2a^2b^2 + 4a^2bc - 2a^2c^2 + (b^4 + 4b^2c^2 + c^4 - 4b^3c - 4bc^3 + 2b^2c^2)=(a2)2−2a2(b−c)2+(b−c)4=a4−2a2(b2−2bc+c2)+(b2−2bc+c2)2=a4−2a2b2+4a2bc−2a2c2+(b4+4b2c2+c4−4b3c−4bc3+2b2c2)=a4−2a2b2−2a2c2+4a2bc+b4+c4+6b2c2−4b3c−4bc3= a^4 - 2a^2b^2 - 2a^2c^2 + 4a^2bc + b^4 + c^4 + 6b^2c^2 - 4b^3c - 4bc^3=a4−2a2b2−2a2c2+4a2bc+b4+c4+6b2c2−4b3c−4bc3=a4+b4+c4−2a2b2−2a2c2+6b2c2+4a2bc−4b3c−4bc3=a^4+b^4+c^4 -2a^2b^2 -2a^2c^2 +6b^2c^2 +4a^2bc -4b^3c -4bc^3=a4+b4+c4−2a2b2−2a2c2+6b2c2+4a2bc−4b3c−4bc3(4) (a+b+c)(a2+b2+c2−ab−bc−ca)(a+b+c)(a^2+b^2+c^2-ab-bc-ca)(a+b+c)(a2+b2+c2−ab−bc−ca)=a(a2+b2+c2−ab−bc−ca)+b(a2+b2+c2−ab−bc−ca)+c(a2+b2+c2−ab−bc−ca)= a(a^2+b^2+c^2-ab-bc-ca) + b(a^2+b^2+c^2-ab-bc-ca) + c(a^2+b^2+c^2-ab-bc-ca)=a(a2+b2+c2−ab−bc−ca)+b(a2+b2+c2−ab−bc−ca)+c(a2+b2+c2−ab−bc−ca)=a3+ab2+ac2−a2b−abc−a2c+a2b+b3+bc2−ab2−b2c−abc+a2c+b2c+c3−abc−bc2−ac2= a^3+ab^2+ac^2-a^2b-abc-a^2c + a^2b+b^3+bc^2-ab^2-b^2c-abc + a^2c+b^2c+c^3-abc-bc^2-ac^2=a3+ab2+ac2−a2b−abc−a2c+a2b+b3+bc2−ab2−b2c−abc+a2c+b2c+c3−abc−bc2−ac2=a3+b3+c3−3abc= a^3 + b^3 + c^3 - 3abc=a3+b3+c3−3abc(5) (a−1)3(a2+a+1)3(a-1)^3(a^2+a+1)^3(a−1)3(a2+a+1)3((a−1)(a2+a+1))3=(a3−1)3=(a3)3−3(a3)2(1)+3(a3)(1)2−13=a9−3a6+3a3−1((a-1)(a^2+a+1))^3 = (a^3 - 1)^3 = (a^3)^3 - 3(a^3)^2(1) + 3(a^3)(1)^2 - 1^3 = a^9 - 3a^6 + 3a^3 - 1((a−1)(a2+a+1))3=(a3−1)3=(a3)3−3(a3)2(1)+3(a3)(1)2−13=a9−3a6+3a3−1(6) (x−1)(x+1)(x4+x2+1)(x-1)(x+1)(x^4+x^2+1)(x−1)(x+1)(x4+x2+1)(x−1)(x+1)=x2−1(x-1)(x+1) = x^2 - 1(x−1)(x+1)=x2−1(x2−1)(x4+x2+1)=x6+x4+x2−x4−x2−1=x6−1(x^2-1)(x^4+x^2+1) = x^6 + x^4 + x^2 - x^4 - x^2 - 1 = x^6 - 1(x2−1)(x4+x2+1)=x6+x4+x2−x4−x2−1=x6−13. 最終的な答え(1) x8−2x4y4+y8x^8 - 2x^4y^4 + y^8x8−2x4y4+y8(2) x4−6x3+7x2+6x−8x^4 - 6x^3 + 7x^2 + 6x - 8x4−6x3+7x2+6x−8(3) a4+b4+c4−2a2b2−2a2c2+6b2c2+4a2bc−4b3c−4bc3a^4+b^4+c^4 -2a^2b^2 -2a^2c^2 +6b^2c^2 +4a^2bc -4b^3c -4bc^3a4+b4+c4−2a2b2−2a2c2+6b2c2+4a2bc−4b3c−4bc3(4) a3+b3+c3−3abca^3 + b^3 + c^3 - 3abca3+b3+c3−3abc(5) a9−3a6+3a3−1a^9 - 3a^6 + 3a^3 - 1a9−3a6+3a3−1(6) x6−1x^6 - 1x6−1