次の循環小数を分数で表しなさい。 (1) $0.\dot{8}$ (2) $0.\ddot{2}\dot{3}$ (3) $1.1\dot{8}\dot{0}$算数分数循環小数小数代数2025/4/211. 問題の内容次の循環小数を分数で表しなさい。(1) 0.8˙0.\dot{8}0.8˙(2) 0.2¨3˙0.\ddot{2}\dot{3}0.2¨3˙(3) 1.18˙0˙1.1\dot{8}\dot{0}1.18˙0˙2. 解き方の手順(1) 0.8˙0.\dot{8}0.8˙ の場合x=0.888...x = 0.888...x=0.888... と置きます。10x=8.888...10x = 8.888...10x=8.888...10x−x=8.888...−0.888...10x - x = 8.888... - 0.888...10x−x=8.888...−0.888...9x=89x = 89x=8x=89x = \frac{8}{9}x=98(2) 0.2¨3˙0.\ddot{2}\dot{3}0.2¨3˙ の場合x=0.232323...x = 0.232323...x=0.232323... と置きます。100x=23.232323...100x = 23.232323...100x=23.232323...100x−x=23.232323...−0.232323...100x - x = 23.232323... - 0.232323...100x−x=23.232323...−0.232323...99x=2399x = 2399x=23x=2399x = \frac{23}{99}x=9923(3) 1.18˙0˙1.1\dot{8}\dot{0}1.18˙0˙ の場合x=1.1808080...x = 1.1808080...x=1.1808080... と置きます。10x=11.808080...10x = 11.808080...10x=11.808080...1000x=1180.808080...1000x = 1180.808080...1000x=1180.808080...1000x−10x=1180.808080...−11.808080...1000x - 10x = 1180.808080... - 11.808080...1000x−10x=1180.808080...−11.808080...990x=1169990x = 1169990x=1169x=1169990x = \frac{1169}{990}x=99011693. 最終的な答え(1) 89\frac{8}{9}98(2) 2399\frac{23}{99}9923(3) 1169990\frac{1169}{990}9901169