ベクトル $\vec{a} = (1, 1, 2)$ と $\vec{b} = (2, -1, 1)$ が与えられたとき、$|\vec{a} + t\vec{b}|$ を最小にする実数 $t$ の値と、そのときの $|\vec{a} + t\vec{b}|$ の最小値を求める。

応用数学ベクトルベクトルの大きさ最小値二次関数平方完成
2025/4/24

1. 問題の内容

ベクトル a=(1,1,2)\vec{a} = (1, 1, 2)b=(2,1,1)\vec{b} = (2, -1, 1) が与えられたとき、a+tb|\vec{a} + t\vec{b}| を最小にする実数 tt の値と、そのときの a+tb|\vec{a} + t\vec{b}| の最小値を求める。

2. 解き方の手順

まず、a+tb\vec{a} + t\vec{b} を計算する。
a+tb=(1,1,2)+t(2,1,1)=(1+2t,1t,2+t)\vec{a} + t\vec{b} = (1, 1, 2) + t(2, -1, 1) = (1 + 2t, 1 - t, 2 + t)
次に、a+tb2|\vec{a} + t\vec{b}|^2 を計算する。
\begin{align*}|\vec{a} + t\vec{b}|^2 &= (1 + 2t)^2 + (1 - t)^2 + (2 + t)^2 \\ &= (1 + 4t + 4t^2) + (1 - 2t + t^2) + (4 + 4t + t^2) \\ &= 6t^2 + 6t + 6\end{align*}
a+tb2|\vec{a} + t\vec{b}|^2 を最小にする tt の値を求める。a+tb2|\vec{a} + t\vec{b}|^2tt の二次関数なので、平方完成することで最小値を求めることができる。
6t2+6t+6=6(t2+t)+6=6(t+12)26(14)+6=6(t+12)2+926t^2 + 6t + 6 = 6(t^2 + t) + 6 = 6\left(t + \frac{1}{2}\right)^2 - 6\left(\frac{1}{4}\right) + 6 = 6\left(t + \frac{1}{2}\right)^2 + \frac{9}{2}
したがって、a+tb2|\vec{a} + t\vec{b}|^2t=12t = -\frac{1}{2} のとき最小値 92\frac{9}{2} をとる。
このとき、a+tb|\vec{a} + t\vec{b}| も最小となり、その値は 92=32=322\sqrt{\frac{9}{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} である。

3. 最終的な答え

t=12t = -\frac{1}{2} のとき、a+tb|\vec{a} + t\vec{b}| は最小値 322\frac{3\sqrt{2}}{2} をとる。
t=12t = -\frac{1}{2}
最小値 =322= \frac{3\sqrt{2}}{2}

「応用数学」の関連問題

A, B, C, D, E, F の6人が待ち合わせをした。最初の人が来てから最後の人が来るまで15分かかった。AはBより8分早く来た、CはDより12分早く来た、EはFより4分早く来た、FはAより早く...

論理文章題順序時間
2025/4/24

問題5:初速度 $5.0 \ m/s$ で走っている自転車が、加速度 $0.50 \ m/s^2$ で $10 \ s$ 進んだときの距離を求める。 問題6:初速度 $10.0 \ m/s$ で走って...

物理運動等加速度運動距離速度加速度
2025/4/24

右図は震源の浅い地震の走時曲線である。以下の問いに答えます。 (1) A, Bの曲線が途中で切れている理由を、選択肢の中からそれぞれ一つずつ選びます。 (2) Cの曲線はP波のものかS波のものかを答え...

地震走時曲線地球物理学距離速度π
2025/4/24

$xy$平面上を運動する物体の時刻 $t$ における $x$ 座標と $y$ 座標が、$x(t) = 6.0t$ [m]、$y(t) = -4.0t^2 + 64$ [m] で与えられる。 (1) 時...

ベクトル運動座標物理
2025/4/24

問題は、与えられた表とグラフに基づいて、x軸上を一定の速さで運動する物体の位置を表す関数 $x(t)$ を求めることです。表は時刻 $t$ における座標 $x$ の値をいくつか示し、グラフも同じ物体の...

運動関数一次関数速度物理
2025/4/24

初速度 $v_0 = 4.0 \ m/s$ で運動していた物体が、加速度 $a = 2.5 \ m/s^2$ で加速し、最終速度 $v = 6.0 \ m/s$ になった。この間に物体が進んだ距離 $...

物理運動等加速度運動
2025/4/23

等加速度直線運動の速度と変位の公式から時間 $t$ を消去し、$v^2 - v_0^2$ の値を求めます。ここで、$v$ は最終速度、$v_0$ は初速度です。

物理運動学等加速度直線運動公式変形
2025/4/23

2kmの道のりを、はじめは毎分60mの速さで歩き、途中から毎分180mの速さで走る。目的地に着くまでにかかる時間を20分以上25分以下にしたいとき、歩く距離を何m以上にすればよいか、そして何m以下にす...

文章問題不等式速さ距離時間線形不等式
2025/4/23

問題は全部で3つのパートに分かれています。 * パート1: $x$軸上を運動する物体の、異なる時刻における位置座標が与えられたとき、その間の平均速度と平均の速さを計算します。 * パート2: ...

運動速度微分
2025/4/23

図に示すように、一定の傾きの斜面と水平な床がなめらかにつながっており、水平な床には壁とばねが設置されている。質量0.40kgの物体を、水平な床の点Sに置き、右向きに初速度7.0m/sで滑らせる。ばね定...

力学エネルギー保存運動エネルギー弾性エネルギーばね
2025/4/23