$x = \sqrt{5} - 2$ のとき、以下の式の値を求めます。 (1) $x + \frac{1}{x}$ (3) $x^3 - \frac{1}{x^3}$ (4) $x^4 - \frac{1}{x^4}$代数学式の値有理化因数分解累乗分数2025/3/171. 問題の内容x=5−2x = \sqrt{5} - 2x=5−2 のとき、以下の式の値を求めます。(1) x+1xx + \frac{1}{x}x+x1(3) x3−1x3x^3 - \frac{1}{x^3}x3−x31(4) x4−1x4x^4 - \frac{1}{x^4}x4−x412. 解き方の手順(1) x+1xx + \frac{1}{x}x+x1まず、1x\frac{1}{x}x1を計算します。1x=15−2\frac{1}{x} = \frac{1}{\sqrt{5} - 2}x1=5−21分母の有理化を行います。1x=15−2×5+25+2=5+25−4=5+2\frac{1}{x} = \frac{1}{\sqrt{5} - 2} \times \frac{\sqrt{5} + 2}{\sqrt{5} + 2} = \frac{\sqrt{5} + 2}{5 - 4} = \sqrt{5} + 2x1=5−21×5+25+2=5−45+2=5+2したがって、x+1x=(5−2)+(5+2)=25x + \frac{1}{x} = (\sqrt{5} - 2) + (\sqrt{5} + 2) = 2\sqrt{5}x+x1=(5−2)+(5+2)=25(3) x3−1x3x^3 - \frac{1}{x^3}x3−x31x3−1x3=(x−1x)3+3(x−1x)x^3 - \frac{1}{x^3} = (x - \frac{1}{x})^3 + 3(x - \frac{1}{x})x3−x31=(x−x1)3+3(x−x1)x−1x=(5−2)−(5+2)=−4x - \frac{1}{x} = (\sqrt{5} - 2) - (\sqrt{5} + 2) = -4x−x1=(5−2)−(5+2)=−4x3−1x3=(−4)3+3(−4)=−64−12=−76x^3 - \frac{1}{x^3} = (-4)^3 + 3(-4) = -64 - 12 = -76x3−x31=(−4)3+3(−4)=−64−12=−76(4) x4−1x4x^4 - \frac{1}{x^4}x4−x41x4−1x4=(x2+1x2)(x2−1x2)=(x2+1x2)(x+1x)(x−1x)x^4 - \frac{1}{x^4} = (x^2 + \frac{1}{x^2})(x^2 - \frac{1}{x^2}) = (x^2 + \frac{1}{x^2})(x + \frac{1}{x})(x - \frac{1}{x})x4−x41=(x2+x21)(x2−x21)=(x2+x21)(x+x1)(x−x1)x+1x=25x + \frac{1}{x} = 2\sqrt{5}x+x1=25x−1x=−4x - \frac{1}{x} = -4x−x1=−4(x+1x)2=x2+2+1x2(x+\frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2}(x+x1)2=x2+2+x21x2+1x2=(x+1x)2−2=(25)2−2=20−2=18x^2 + \frac{1}{x^2} = (x+\frac{1}{x})^2 - 2 = (2\sqrt{5})^2 - 2 = 20 - 2 = 18x2+x21=(x+x1)2−2=(25)2−2=20−2=18x4−1x4=(18)(25)(−4)=−1445x^4 - \frac{1}{x^4} = (18)(2\sqrt{5})(-4) = -144\sqrt{5}x4−x41=(18)(25)(−4)=−14453. 最終的な答え(1) 252\sqrt{5}25(3) −76-76−76(4) −1445-144\sqrt{5}−1445