次の方程式を解く問題です。 (1) $(\log_3 x)^2 - 2\log_3 x - 3 = 0$ (2) $1 + \log_4(x-1) = \log_2(x-4)$代数学対数方程式対数方程式二次方程式真数条件2025/3/171. 問題の内容次の方程式を解く問題です。(1) (log3x)2−2log3x−3=0(\log_3 x)^2 - 2\log_3 x - 3 = 0(log3x)2−2log3x−3=0(2) 1+log4(x−1)=log2(x−4)1 + \log_4(x-1) = \log_2(x-4)1+log4(x−1)=log2(x−4)2. 解き方の手順(1)log3x=t\log_3 x = tlog3x=t とおくと、t2−2t−3=0t^2 - 2t - 3 = 0t2−2t−3=0(t−3)(t+1)=0(t-3)(t+1) = 0(t−3)(t+1)=0t=3,−1t = 3, -1t=3,−1log3x=3\log_3 x = 3log3x=3 のとき、 x=33=27x = 3^3 = 27x=33=27log3x=−1\log_3 x = -1log3x=−1 のとき、 x=3−1=13x = 3^{-1} = \frac{1}{3}x=3−1=31よって、x=27,13x = 27, \frac{1}{3}x=27,31(2)1+log4(x−1)=log2(x−4)1 + \log_4(x-1) = \log_2(x-4)1+log4(x−1)=log2(x−4)1+log2(x−1)log24=log2(x−4)1 + \frac{\log_2(x-1)}{\log_2 4} = \log_2(x-4)1+log24log2(x−1)=log2(x−4)1+log2(x−1)2=log2(x−4)1 + \frac{\log_2(x-1)}{2} = \log_2(x-4)1+2log2(x−1)=log2(x−4)2+log2(x−1)=2log2(x−4)2 + \log_2(x-1) = 2\log_2(x-4)2+log2(x−1)=2log2(x−4)log24+log2(x−1)=log2(x−4)2\log_2 4 + \log_2(x-1) = \log_2(x-4)^2log24+log2(x−1)=log2(x−4)2log24(x−1)=log2(x−4)2\log_2 4(x-1) = \log_2(x-4)^2log24(x−1)=log2(x−4)24(x−1)=(x−4)24(x-1) = (x-4)^24(x−1)=(x−4)24x−4=x2−8x+164x - 4 = x^2 - 8x + 164x−4=x2−8x+16x2−12x+20=0x^2 - 12x + 20 = 0x2−12x+20=0(x−10)(x−2)=0(x-10)(x-2) = 0(x−10)(x−2)=0x=10,2x = 10, 2x=10,2真数条件より、x−1>0x-1 > 0x−1>0 かつ x−4>0x-4 > 0x−4>0 なので、x>4x > 4x>4したがって、x=10x=10x=10 が解。3. 最終的な答え(1)のア:27(1)のイ:1/3(2) 10