$(x + \frac{1}{2})^4$を展開してください。代数学展開二項定理多項式2025/4/271. 問題の内容(x+12)4(x + \frac{1}{2})^4(x+21)4を展開してください。2. 解き方の手順二項定理を使います。二項定理は次の通りです。(a+b)n=∑k=0n(nk)an−kbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k(a+b)n=∑k=0n(kn)an−kbkここで、(nk)=n!k!(n−k)!\binom{n}{k} = \frac{n!}{k!(n-k)!}(kn)=k!(n−k)!n!です。この問題では、a=xa = xa=x, b=12b = \frac{1}{2}b=21, n=4n = 4n=4なので、(x+12)4=∑k=04(4k)x4−k(12)k(x + \frac{1}{2})^4 = \sum_{k=0}^{4} \binom{4}{k} x^{4-k} (\frac{1}{2})^k(x+21)4=∑k=04(k4)x4−k(21)kこれを展開すると、(x+12)4=(40)x4(12)0+(41)x3(12)1+(42)x2(12)2+(43)x1(12)3+(44)x0(12)4(x + \frac{1}{2})^4 = \binom{4}{0} x^4 (\frac{1}{2})^0 + \binom{4}{1} x^3 (\frac{1}{2})^1 + \binom{4}{2} x^2 (\frac{1}{2})^2 + \binom{4}{3} x^1 (\frac{1}{2})^3 + \binom{4}{4} x^0 (\frac{1}{2})^4(x+21)4=(04)x4(21)0+(14)x3(21)1+(24)x2(21)2+(34)x1(21)3+(44)x0(21)4各項を計算します。(40)=1\binom{4}{0} = 1(04)=1, (41)=4\binom{4}{1} = 4(14)=4, (42)=6\binom{4}{2} = 6(24)=6, (43)=4\binom{4}{3} = 4(34)=4, (44)=1\binom{4}{4} = 1(44)=1(x+12)4=1⋅x4⋅1+4⋅x3⋅12+6⋅x2⋅14+4⋅x⋅18+1⋅1⋅116(x + \frac{1}{2})^4 = 1 \cdot x^4 \cdot 1 + 4 \cdot x^3 \cdot \frac{1}{2} + 6 \cdot x^2 \cdot \frac{1}{4} + 4 \cdot x \cdot \frac{1}{8} + 1 \cdot 1 \cdot \frac{1}{16}(x+21)4=1⋅x4⋅1+4⋅x3⋅21+6⋅x2⋅41+4⋅x⋅81+1⋅1⋅161(x+12)4=x4+2x3+32x2+12x+116(x + \frac{1}{2})^4 = x^4 + 2x^3 + \frac{3}{2} x^2 + \frac{1}{2} x + \frac{1}{16}(x+21)4=x4+2x3+23x2+21x+1613. 最終的な答えx4+2x3+32x2+12x+116x^4 + 2x^3 + \frac{3}{2}x^2 + \frac{1}{2}x + \frac{1}{16}x4+2x3+23x2+21x+161