Let y=(x2+3)2(1+cosx)4e3x. Taking the natural logarithm of both sides, we have
lny=ln((x2+3)2(1+cosx)4e3x) Using the logarithm properties ln(ba)=lna−lnb and ln(ab)=lna+lnb, we can rewrite the equation as: lny=ln(e3x)−ln((x2+3)2(1+cosx)4) lny=ln(e3x)−[ln(x2+3)2+ln(1+cosx)4] lny=ln(e3x)−ln(x2+3)2−ln(1+cosx)4 Using the logarithm property ln(ab)=blna, we have lny=3xlne−2ln(x2+3)−4ln(1+cosx) Since lne=1, we have lny=3x−2ln(x2+3)−4ln(1+cosx) Now, differentiate both sides with respect to x: y1dxdy=dxd[3x−2ln(x2+3)−4ln(1+cosx)] y1dxdy=3−2x2+31(2x)−41+cosx1(−sinx) y1dxdy=3−x2+34x+1+cosx4sinx Multiply both sides by y: dxdy=y(3−x2+34x+1+cosx4sinx) Substitute y=(x2+3)2(1+cosx)4e3x back into the equation: dxdy=(x2+3)2(1+cosx)4e3x(3−x2+34x+1+cosx4sinx)