We are asked to find the derivative of the function $y = \frac{e^{3x}}{(x^2+3)^2(1+\cos x)^4}$ using logarithmic differentiation.

AnalysisDifferentiationLogarithmic DifferentiationCalculusChain Rule
2025/4/28

1. Problem Description

We are asked to find the derivative of the function y=e3x(x2+3)2(1+cosx)4y = \frac{e^{3x}}{(x^2+3)^2(1+\cos x)^4} using logarithmic differentiation.

2. Solution Steps

Let y=e3x(x2+3)2(1+cosx)4y = \frac{e^{3x}}{(x^2+3)^2(1+\cos x)^4}.
Taking the natural logarithm of both sides, we have
lny=ln(e3x(x2+3)2(1+cosx)4)\ln y = \ln \left(\frac{e^{3x}}{(x^2+3)^2(1+\cos x)^4}\right)
Using the logarithm properties ln(ab)=lnalnb\ln(\frac{a}{b}) = \ln a - \ln b and ln(ab)=lna+lnb\ln(ab) = \ln a + \ln b, we can rewrite the equation as:
lny=ln(e3x)ln((x2+3)2(1+cosx)4)\ln y = \ln(e^{3x}) - \ln((x^2+3)^2(1+\cos x)^4)
lny=ln(e3x)[ln(x2+3)2+ln(1+cosx)4]\ln y = \ln(e^{3x}) - [\ln(x^2+3)^2 + \ln(1+\cos x)^4]
lny=ln(e3x)ln(x2+3)2ln(1+cosx)4\ln y = \ln(e^{3x}) - \ln(x^2+3)^2 - \ln(1+\cos x)^4
Using the logarithm property ln(ab)=blna\ln(a^b) = b\ln a, we have
lny=3xlne2ln(x2+3)4ln(1+cosx)\ln y = 3x\ln e - 2\ln(x^2+3) - 4\ln(1+\cos x)
Since lne=1\ln e = 1, we have
lny=3x2ln(x2+3)4ln(1+cosx)\ln y = 3x - 2\ln(x^2+3) - 4\ln(1+\cos x)
Now, differentiate both sides with respect to xx:
1ydydx=ddx[3x2ln(x2+3)4ln(1+cosx)]\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} [3x - 2\ln(x^2+3) - 4\ln(1+\cos x)]
1ydydx=321x2+3(2x)411+cosx(sinx)\frac{1}{y} \frac{dy}{dx} = 3 - 2 \frac{1}{x^2+3} (2x) - 4 \frac{1}{1+\cos x} (-\sin x)
1ydydx=34xx2+3+4sinx1+cosx\frac{1}{y} \frac{dy}{dx} = 3 - \frac{4x}{x^2+3} + \frac{4\sin x}{1+\cos x}
Multiply both sides by yy:
dydx=y(34xx2+3+4sinx1+cosx)\frac{dy}{dx} = y \left(3 - \frac{4x}{x^2+3} + \frac{4\sin x}{1+\cos x}\right)
Substitute y=e3x(x2+3)2(1+cosx)4y = \frac{e^{3x}}{(x^2+3)^2(1+\cos x)^4} back into the equation:
dydx=e3x(x2+3)2(1+cosx)4(34xx2+3+4sinx1+cosx)\frac{dy}{dx} = \frac{e^{3x}}{(x^2+3)^2(1+\cos x)^4} \left(3 - \frac{4x}{x^2+3} + \frac{4\sin x}{1+\cos x}\right)

3. Final Answer

dydx=e3x(x2+3)2(1+cosx)4(34xx2+3+4sinx1+cosx)\frac{dy}{dx} = \frac{e^{3x}}{(x^2+3)^2(1+\cos x)^4} \left(3 - \frac{4x}{x^2+3} + \frac{4\sin x}{1+\cos x}\right)

Related problems in "Analysis"

Find the directional derivative of the function $f(x, y, z) = x^2 + y^2 + z^2$ at the point $p = (1,...

Multivariable CalculusDirectional DerivativeGradientVector Calculus
2025/4/30

The problem asks us to find the directional derivative of the function $f(x, y, z) = x^3y - y^2z^2$ ...

Multivariable CalculusDirectional DerivativeGradient
2025/4/30

We are asked to find the gradient of the function $f(x, y, z) = xz \ln(x + y + z)$. The gradient is ...

Multivariable CalculusGradientPartial DerivativesLogarithmic Functions
2025/4/30

We are asked to find the gradient $\nabla f$ of the function $f(x, y, z) = x^2y + y^2z + z^2x$.

Multivariable CalculusGradientPartial DerivativesVector Calculus
2025/4/30

We need to find the limit of the function $f(x, y) = \frac{xy^2}{x^2 + y^4}$ as $(x, y)$ approaches ...

LimitsMultivariable CalculusPath DependenceFunctions of Several Variables
2025/4/30

The problem asks to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ a...

LimitsMultivariable CalculusTrigonometric Functions
2025/4/30

We are asked to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ appro...

LimitsMultivariable CalculusTrigonometric FunctionsL'Hopital's RuleSmall Angle Approximation
2025/4/30

The problem presents three parts, A, B, and C, involving functions $g(x)$, $h(x)$, $j(x)$, $k(x)$, a...

LogarithmsTrigonometryEquationsFunctionsExponential Functions
2025/4/30

The problem concerns the analysis of the function $f(x) = x^2 - x + \dots$. We are asked to: 1. Calc...

FunctionsDerivativesMonotonicityTangent LinesCalculus
2025/4/30

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30