The problem asks us to find the directional derivative of the function $f(x, y, z) = x^3y - y^2z^2$ at the point $p = (-2, 1, 3)$ in the direction of the vector $a = i - 2j + 2k$.

AnalysisMultivariable CalculusDirectional DerivativeGradient
2025/4/30

1. Problem Description

The problem asks us to find the directional derivative of the function f(x,y,z)=x3yy2z2f(x, y, z) = x^3y - y^2z^2 at the point p=(2,1,3)p = (-2, 1, 3) in the direction of the vector a=i2j+2ka = i - 2j + 2k.

2. Solution Steps

First, we need to find the gradient of ff.
The gradient of ff is given by f=(fx,fy,fz)\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}).
fx=x(x3yy2z2)=3x2y\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^3y - y^2z^2) = 3x^2y
fy=y(x3yy2z2)=x32yz2\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^3y - y^2z^2) = x^3 - 2yz^2
fz=z(x3yy2z2)=2y2z\frac{\partial f}{\partial z} = \frac{\partial}{\partial z}(x^3y - y^2z^2) = -2y^2z
So, f=(3x2y,x32yz2,2y2z)\nabla f = (3x^2y, x^3 - 2yz^2, -2y^2z).
Now we evaluate the gradient at the point p=(2,1,3)p = (-2, 1, 3):
f(2,1,3)=(3(2)2(1),(2)32(1)(3)2,2(1)2(3))=(3(4)(1),82(9),2(3))=(12,818,6)=(12,26,6)\nabla f(-2, 1, 3) = (3(-2)^2(1), (-2)^3 - 2(1)(3)^2, -2(1)^2(3)) = (3(4)(1), -8 - 2(9), -2(3)) = (12, -8 - 18, -6) = (12, -26, -6).
Next, we need to find the unit vector in the direction of a=i2j+2ka = i - 2j + 2k.
a=(1,2,2)a = (1, -2, 2).
The magnitude of aa is a=12+(2)2+22=1+4+4=9=3||a|| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3.
The unit vector is u^=aa=(1,2,2)3=(13,23,23)\hat{u} = \frac{a}{||a||} = \frac{(1, -2, 2)}{3} = (\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}).
The directional derivative of ff at pp in the direction of aa is given by Daf(p)=f(p)u^D_a f(p) = \nabla f(p) \cdot \hat{u}.
Daf(p)=(12,26,6)(13,23,23)=12(13)26(23)6(23)=123+523123=12+52123=523D_a f(p) = (12, -26, -6) \cdot (\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}) = 12(\frac{1}{3}) - 26(-\frac{2}{3}) - 6(\frac{2}{3}) = \frac{12}{3} + \frac{52}{3} - \frac{12}{3} = \frac{12 + 52 - 12}{3} = \frac{52}{3}.

3. Final Answer

The directional derivative of ff at the point pp in the direction of aa is 523\frac{52}{3}.

Related problems in "Analysis"

Find the directional derivative of the function $f(x, y, z) = x^2 + y^2 + z^2$ at the point $p = (1,...

Multivariable CalculusDirectional DerivativeGradientVector Calculus
2025/4/30

We are asked to find the gradient of the function $f(x, y, z) = xz \ln(x + y + z)$. The gradient is ...

Multivariable CalculusGradientPartial DerivativesLogarithmic Functions
2025/4/30

We are asked to find the gradient $\nabla f$ of the function $f(x, y, z) = x^2y + y^2z + z^2x$.

Multivariable CalculusGradientPartial DerivativesVector Calculus
2025/4/30

We need to find the limit of the function $f(x, y) = \frac{xy^2}{x^2 + y^4}$ as $(x, y)$ approaches ...

LimitsMultivariable CalculusPath DependenceFunctions of Several Variables
2025/4/30

The problem asks to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ a...

LimitsMultivariable CalculusTrigonometric Functions
2025/4/30

We are asked to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ appro...

LimitsMultivariable CalculusTrigonometric FunctionsL'Hopital's RuleSmall Angle Approximation
2025/4/30

The problem presents three parts, A, B, and C, involving functions $g(x)$, $h(x)$, $j(x)$, $k(x)$, a...

LogarithmsTrigonometryEquationsFunctionsExponential Functions
2025/4/30

The problem concerns the analysis of the function $f(x) = x^2 - x + \dots$. We are asked to: 1. Calc...

FunctionsDerivativesMonotonicityTangent LinesCalculus
2025/4/30

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30