The problem presents three parts, A, B, and C, involving functions $g(x)$, $h(x)$, $j(x)$, $k(x)$, and $m(x)$. (A) We are given $g(x) = 3\ln x - \frac{1}{2}\ln x$ and $h(x) = \frac{\sin^2 x - 1}{\cos x}$. We need to rewrite $g(x)$ as a single natural logarithm and rewrite $h(x)$ in terms of $\cos x$ only. (B) We are given $j(x) = 2\sin x \cos x - \cos x$ and $k(x) = 8e^{3x} - e$. We need to solve $j(x) = 0$ for $x$ in $[0, \frac{\pi}{2}]$ and $k(x) = 3e$ for $x$. (C) We are given $m(x) = \cos(2x) + 4$. We need to find the values of $x$ such that $m(x) = \frac{9}{2}$.

AnalysisLogarithmsTrigonometryEquationsFunctionsExponential Functions
2025/4/30

1. Problem Description

The problem presents three parts, A, B, and C, involving functions g(x)g(x), h(x)h(x), j(x)j(x), k(x)k(x), and m(x)m(x).
(A) We are given g(x)=3lnx12lnxg(x) = 3\ln x - \frac{1}{2}\ln x and h(x)=sin2x1cosxh(x) = \frac{\sin^2 x - 1}{\cos x}. We need to rewrite g(x)g(x) as a single natural logarithm and rewrite h(x)h(x) in terms of cosx\cos x only.
(B) We are given j(x)=2sinxcosxcosxj(x) = 2\sin x \cos x - \cos x and k(x)=8e3xek(x) = 8e^{3x} - e. We need to solve j(x)=0j(x) = 0 for xx in [0,π2][0, \frac{\pi}{2}] and k(x)=3ek(x) = 3e for xx.
(C) We are given m(x)=cos(2x)+4m(x) = \cos(2x) + 4. We need to find the values of xx such that m(x)=92m(x) = \frac{9}{2}.

2. Solution Steps

(A)(i)
We need to rewrite g(x)=3lnx12lnxg(x) = 3\ln x - \frac{1}{2}\ln x as a single natural logarithm.
g(x)=3lnx12lnx=ln(x3)ln(x)=ln(x3x)=ln(x3x1/2)=ln(x31/2)=ln(x5/2)g(x) = 3\ln x - \frac{1}{2}\ln x = \ln(x^3) - \ln(\sqrt{x}) = \ln\left(\frac{x^3}{\sqrt{x}}\right) = \ln\left(\frac{x^3}{x^{1/2}}\right) = \ln(x^{3 - 1/2}) = \ln(x^{5/2})
(A)(ii)
We need to rewrite h(x)=sin2x1cosxh(x) = \frac{\sin^2 x - 1}{\cos x} in terms of cosx\cos x only.
Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, we have sin2x1=cos2x\sin^2 x - 1 = -\cos^2 x.
Therefore, h(x)=cos2xcosx=cosxh(x) = \frac{-\cos^2 x}{\cos x} = -\cos x.
(B)(i)
We need to solve j(x)=2sinxcosxcosx=0j(x) = 2\sin x \cos x - \cos x = 0 for xx in [0,π2][0, \frac{\pi}{2}].
j(x)=cosx(2sinx1)=0j(x) = \cos x (2\sin x - 1) = 0.
So either cosx=0\cos x = 0 or 2sinx1=02\sin x - 1 = 0, which means sinx=12\sin x = \frac{1}{2}.
If cosx=0\cos x = 0, then x=π2x = \frac{\pi}{2}.
If sinx=12\sin x = \frac{1}{2}, then x=π6x = \frac{\pi}{6}.
Both solutions are in the interval [0,π2][0, \frac{\pi}{2}].
(B)(ii)
We need to solve k(x)=8e3xe=3ek(x) = 8e^{3x} - e = 3e for xx.
8e3xe=3e8e^{3x} - e = 3e
8e3x=4e8e^{3x} = 4e
e3x=4e8=e2e^{3x} = \frac{4e}{8} = \frac{e}{2}
Taking the natural logarithm of both sides:
3x=ln(e2)=lneln2=1ln23x = \ln\left(\frac{e}{2}\right) = \ln e - \ln 2 = 1 - \ln 2
x=1ln23x = \frac{1 - \ln 2}{3}
(C)
We need to find xx such that m(x)=cos(2x)+4=92m(x) = \cos(2x) + 4 = \frac{9}{2}.
cos(2x)+4=92\cos(2x) + 4 = \frac{9}{2}
cos(2x)=924=9282=12\cos(2x) = \frac{9}{2} - 4 = \frac{9}{2} - \frac{8}{2} = \frac{1}{2}
2x=cos1(12)2x = \cos^{-1}\left(\frac{1}{2}\right)
2x=π3+2πn2x = \frac{\pi}{3} + 2\pi n or 2x=π3+2πn2x = -\frac{\pi}{3} + 2\pi n for any integer nn.
x=π6+πnx = \frac{\pi}{6} + \pi n or x=π6+πnx = -\frac{\pi}{6} + \pi n for any integer nn.

3. Final Answer

(A)(i) ln(x5/2)\ln(x^{5/2})
(A)(ii) cosx-\cos x
(B)(i) x=π6,π2x = \frac{\pi}{6}, \frac{\pi}{2}
(B)(ii) x=1ln23x = \frac{1 - \ln 2}{3}
(C) x=π6+nπx = \frac{\pi}{6} + n\pi, x=π6+nπx = -\frac{\pi}{6} + n\pi where nn is any integer.

Related problems in "Analysis"

Find the directional derivative of the function $f(x, y, z) = x^2 + y^2 + z^2$ at the point $p = (1,...

Multivariable CalculusDirectional DerivativeGradientVector Calculus
2025/4/30

The problem asks us to find the directional derivative of the function $f(x, y, z) = x^3y - y^2z^2$ ...

Multivariable CalculusDirectional DerivativeGradient
2025/4/30

We are asked to find the gradient of the function $f(x, y, z) = xz \ln(x + y + z)$. The gradient is ...

Multivariable CalculusGradientPartial DerivativesLogarithmic Functions
2025/4/30

We are asked to find the gradient $\nabla f$ of the function $f(x, y, z) = x^2y + y^2z + z^2x$.

Multivariable CalculusGradientPartial DerivativesVector Calculus
2025/4/30

We need to find the limit of the function $f(x, y) = \frac{xy^2}{x^2 + y^4}$ as $(x, y)$ approaches ...

LimitsMultivariable CalculusPath DependenceFunctions of Several Variables
2025/4/30

The problem asks to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ a...

LimitsMultivariable CalculusTrigonometric Functions
2025/4/30

We are asked to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ appro...

LimitsMultivariable CalculusTrigonometric FunctionsL'Hopital's RuleSmall Angle Approximation
2025/4/30

The problem concerns the analysis of the function $f(x) = x^2 - x + \dots$. We are asked to: 1. Calc...

FunctionsDerivativesMonotonicityTangent LinesCalculus
2025/4/30

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30