We are asked to find the gradient of the function $f(x, y, z) = xz \ln(x + y + z)$. The gradient is given by $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$.

AnalysisMultivariable CalculusGradientPartial DerivativesLogarithmic Functions
2025/4/30

1. Problem Description

We are asked to find the gradient of the function f(x,y,z)=xzln(x+y+z)f(x, y, z) = xz \ln(x + y + z).
The gradient is given by f=(fx,fy,fz)\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).

2. Solution Steps

First, we find the partial derivative of ff with respect to xx:
fx=x(xzln(x+y+z))\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(xz \ln(x + y + z))
Using the product rule, we have
fx=zln(x+y+z)+xz1x+y+z1=zln(x+y+z)+xzx+y+z\frac{\partial f}{\partial x} = z \ln(x + y + z) + xz \cdot \frac{1}{x + y + z} \cdot 1 = z \ln(x + y + z) + \frac{xz}{x + y + z}
Next, we find the partial derivative of ff with respect to yy:
fy=y(xzln(x+y+z))\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(xz \ln(x + y + z))
fy=xz1x+y+z1=xzx+y+z\frac{\partial f}{\partial y} = xz \cdot \frac{1}{x + y + z} \cdot 1 = \frac{xz}{x + y + z}
Finally, we find the partial derivative of ff with respect to zz:
fz=z(xzln(x+y+z))\frac{\partial f}{\partial z} = \frac{\partial}{\partial z}(xz \ln(x + y + z))
Using the product rule, we have
fz=xln(x+y+z)+xz1x+y+z1=xln(x+y+z)+xzx+y+z\frac{\partial f}{\partial z} = x \ln(x + y + z) + xz \cdot \frac{1}{x + y + z} \cdot 1 = x \ln(x + y + z) + \frac{xz}{x + y + z}
Therefore, the gradient is
f=(zln(x+y+z)+xzx+y+z,xzx+y+z,xln(x+y+z)+xzx+y+z)\nabla f = \left(z \ln(x + y + z) + \frac{xz}{x + y + z}, \frac{xz}{x + y + z}, x \ln(x + y + z) + \frac{xz}{x + y + z}\right).

3. Final Answer

f=(zln(x+y+z)+xzx+y+z,xzx+y+z,xln(x+y+z)+xzx+y+z)\nabla f = \left(z \ln(x + y + z) + \frac{xz}{x + y + z}, \frac{xz}{x + y + z}, x \ln(x + y + z) + \frac{xz}{x + y + z}\right)

Related problems in "Analysis"

Find the directional derivative of the function $f(x, y, z) = x^2 + y^2 + z^2$ at the point $p = (1,...

Multivariable CalculusDirectional DerivativeGradientVector Calculus
2025/4/30

The problem asks us to find the directional derivative of the function $f(x, y, z) = x^3y - y^2z^2$ ...

Multivariable CalculusDirectional DerivativeGradient
2025/4/30

We are asked to find the gradient $\nabla f$ of the function $f(x, y, z) = x^2y + y^2z + z^2x$.

Multivariable CalculusGradientPartial DerivativesVector Calculus
2025/4/30

We need to find the limit of the function $f(x, y) = \frac{xy^2}{x^2 + y^4}$ as $(x, y)$ approaches ...

LimitsMultivariable CalculusPath DependenceFunctions of Several Variables
2025/4/30

The problem asks to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ a...

LimitsMultivariable CalculusTrigonometric Functions
2025/4/30

We are asked to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ appro...

LimitsMultivariable CalculusTrigonometric FunctionsL'Hopital's RuleSmall Angle Approximation
2025/4/30

The problem presents three parts, A, B, and C, involving functions $g(x)$, $h(x)$, $j(x)$, $k(x)$, a...

LogarithmsTrigonometryEquationsFunctionsExponential Functions
2025/4/30

The problem concerns the analysis of the function $f(x) = x^2 - x + \dots$. We are asked to: 1. Calc...

FunctionsDerivativesMonotonicityTangent LinesCalculus
2025/4/30

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30