The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

AnalysisIntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

1. Problem Description

The problem is to evaluate the indefinite integral:
3x5dx\int \sqrt{3x-5} dx

2. Solution Steps

Let u=3x5u = 3x - 5.
Then dudx=3\frac{du}{dx} = 3, which implies dx=13dudx = \frac{1}{3} du.
Substituting uu and dxdx into the integral, we have:
3x5dx=u13du=13udu=13u12du\int \sqrt{3x-5} dx = \int \sqrt{u} \cdot \frac{1}{3} du = \frac{1}{3} \int \sqrt{u} du = \frac{1}{3} \int u^{\frac{1}{2}} du
Using the power rule for integration:
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C
We get:
13u12du=13u12+112+1+C=13u3232+C=1323u32+C=29u32+C\frac{1}{3} \int u^{\frac{1}{2}} du = \frac{1}{3} \cdot \frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} + C = \frac{1}{3} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{1}{3} \cdot \frac{2}{3} u^{\frac{3}{2}} + C = \frac{2}{9} u^{\frac{3}{2}} + C
Now, substitute u=3x5u = 3x - 5 back into the expression:
29u32+C=29(3x5)32+C\frac{2}{9} u^{\frac{3}{2}} + C = \frac{2}{9} (3x - 5)^{\frac{3}{2}} + C

3. Final Answer

3x5dx=29(3x5)32+C\int \sqrt{3x-5} dx = \frac{2}{9}(3x-5)^{\frac{3}{2}} + C

Related problems in "Analysis"

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

Integrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}...

CalculusIntegrationIndefinite IntegralFunctions
2025/4/30

The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

Indefinite Integralu-substitutionCalculus
2025/4/30

We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

IntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30

The problem asks to evaluate the integral: $I = \int \frac{x^3}{\sqrt{4 - x^2}} dx$

IntegrationTrigonometric SubstitutionDefinite Integral
2025/4/30

The problem is to evaluate the following four integrals, showing two different methods for solving e...

IntegrationDefinite Integralsu-substitutionTrigonometric IdentitiesExponential IntegralCalculus
2025/4/29

We are given the function $f(x) = \ln|x^2 - 1|$. We need to find the domain, intercepts, limits, fir...

CalculusDomainLimitsDerivativesCritical PointsIncreasing and Decreasing IntervalsConcavityGraphing
2025/4/29