The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

AnalysisIntegrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

1. Problem Description

The problem asks to evaluate the indefinite integral (2x+1)7dx\int (2x+1)^7 dx.

2. Solution Steps

We can solve this integral using u-substitution.
Let u=2x+1u = 2x + 1.
Then, dudx=2\frac{du}{dx} = 2, which means dx=12dudx = \frac{1}{2} du.
Substituting uu and dxdx into the integral, we have:
(2x+1)7dx=u7(12du)=12u7du\int (2x+1)^7 dx = \int u^7 (\frac{1}{2} du) = \frac{1}{2} \int u^7 du
Now we can use the power rule for integration:
xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C
Applying the power rule to our integral, we get:
12u7du=12u7+17+1+C=12u88+C=u816+C\frac{1}{2} \int u^7 du = \frac{1}{2} \cdot \frac{u^{7+1}}{7+1} + C = \frac{1}{2} \cdot \frac{u^8}{8} + C = \frac{u^8}{16} + C
Finally, we substitute back u=2x+1u = 2x + 1 to express the result in terms of xx:
u816+C=(2x+1)816+C\frac{u^8}{16} + C = \frac{(2x+1)^8}{16} + C

3. Final Answer

(2x+1)816+C\frac{(2x+1)^8}{16} + C

Related problems in "Analysis"

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}...

CalculusIntegrationIndefinite IntegralFunctions
2025/4/30

The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

Indefinite Integralu-substitutionCalculus
2025/4/30

We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

IntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30

The problem asks to evaluate the integral: $I = \int \frac{x^3}{\sqrt{4 - x^2}} dx$

IntegrationTrigonometric SubstitutionDefinite Integral
2025/4/30

The problem is to evaluate the following four integrals, showing two different methods for solving e...

IntegrationDefinite Integralsu-substitutionTrigonometric IdentitiesExponential IntegralCalculus
2025/4/29

We are given the function $f(x) = \ln|x^2 - 1|$. We need to find the domain, intercepts, limits, fir...

CalculusDomainLimitsDerivativesCritical PointsIncreasing and Decreasing IntervalsConcavityGraphing
2025/4/29