We can solve this integral using substitution.
Let u=4−x2. Then du=−2xdx, so xdx=−21du. Also, x2=4−u. We can rewrite the integral as:
I=∫4−x2x2⋅xdx=∫u(4−u)(−21)du=−21∫u4−udu I=−21∫(4u−1/2−u1/2)du=−21(4∫u−1/2du−∫u1/2du) Using the power rule for integration ∫xndx=n+1xn+1+C: ∫u−1/2du=1/2u1/2=2u1/2 ∫u1/2du=3/2u3/2=32u3/2 Therefore,
I=−21(4(2u1/2)−32u3/2)+C=−21(8u1/2−32u3/2)+C I=−4u1/2+31u3/2+C Substituting back u=4−x2: I=−44−x2+31(4−x2)3/2+C=31(4−x2)3/2−44−x2+C We can also write this as:
I=4−x2(31(4−x2)−4)+C=4−x2(34−3x2−312)+C I=4−x2(3−x2−8)+C=−31(x2+8)4−x2+C