We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

AnalysisIntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

1. Problem Description

We are asked to evaluate the integral I=x34x2dxI = \int \frac{x^3}{\sqrt{4-x^2}} dx.

2. Solution Steps

We can solve this integral using substitution.
Let u=4x2u = 4 - x^2. Then du=2xdxdu = -2x dx, so xdx=12dux dx = -\frac{1}{2} du.
Also, x2=4ux^2 = 4 - u.
We can rewrite the integral as:
I=x2x4x2dx=(4u)u(12)du=124uuduI = \int \frac{x^2 \cdot x}{\sqrt{4-x^2}} dx = \int \frac{(4-u)}{\sqrt{u}} (-\frac{1}{2}) du = -\frac{1}{2} \int \frac{4-u}{\sqrt{u}} du
I=12(4u1/2u1/2)du=12(4u1/2duu1/2du)I = -\frac{1}{2} \int (4u^{-1/2} - u^{1/2}) du = -\frac{1}{2} \left(4 \int u^{-1/2} du - \int u^{1/2} du \right)
Using the power rule for integration xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C:
u1/2du=u1/21/2=2u1/2\int u^{-1/2} du = \frac{u^{1/2}}{1/2} = 2u^{1/2}
u1/2du=u3/23/2=23u3/2\int u^{1/2} du = \frac{u^{3/2}}{3/2} = \frac{2}{3} u^{3/2}
Therefore,
I=12(4(2u1/2)23u3/2)+C=12(8u1/223u3/2)+CI = -\frac{1}{2} \left(4 (2u^{1/2}) - \frac{2}{3} u^{3/2} \right) + C = -\frac{1}{2} \left(8 u^{1/2} - \frac{2}{3} u^{3/2} \right) + C
I=4u1/2+13u3/2+CI = -4u^{1/2} + \frac{1}{3} u^{3/2} + C
Substituting back u=4x2u = 4 - x^2:
I=44x2+13(4x2)3/2+C=13(4x2)3/244x2+CI = -4\sqrt{4-x^2} + \frac{1}{3}(4-x^2)^{3/2} + C = \frac{1}{3}(4-x^2)^{3/2} - 4\sqrt{4-x^2} + C
We can also write this as:
I=4x2(13(4x2)4)+C=4x2(43x23123)+CI = \sqrt{4-x^2} \left(\frac{1}{3}(4-x^2) - 4\right) + C = \sqrt{4-x^2} \left(\frac{4}{3} - \frac{x^2}{3} - \frac{12}{3}\right) + C
I=4x2(x283)+C=13(x2+8)4x2+CI = \sqrt{4-x^2} \left(\frac{-x^2 - 8}{3}\right) + C = -\frac{1}{3}(x^2+8)\sqrt{4-x^2} + C

3. Final Answer

I=13(x2+8)4x2+CI = -\frac{1}{3}(x^2+8)\sqrt{4-x^2} + C

Related problems in "Analysis"

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

Integrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}...

CalculusIntegrationIndefinite IntegralFunctions
2025/4/30

The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

Indefinite Integralu-substitutionCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30

The problem asks to evaluate the integral: $I = \int \frac{x^3}{\sqrt{4 - x^2}} dx$

IntegrationTrigonometric SubstitutionDefinite Integral
2025/4/30

The problem is to evaluate the following four integrals, showing two different methods for solving e...

IntegrationDefinite Integralsu-substitutionTrigonometric IdentitiesExponential IntegralCalculus
2025/4/29

We are given the function $f(x) = \ln|x^2 - 1|$. We need to find the domain, intercepts, limits, fir...

CalculusDomainLimitsDerivativesCritical PointsIncreasing and Decreasing IntervalsConcavityGraphing
2025/4/29