First, we can separate the fraction into individual terms:
∫x21+3x+7x2−2x3dx=∫(x21+x23x+x27x2−x22x3)dx Simplify the expression:
=∫(x−2+3x−1+7−2x)dx Now, we integrate each term separately using the power rule ∫xndx=n+1xn+1+C for n=−1 and ∫x1dx=ln∣x∣+C. ∫x−2dx=−2+1x−2+1=−1x−1=−x−1=−x1 ∫3x−1dx=3∫x1dx=3ln∣x∣ ∫7dx=7x ∫−2xdx=−2∫xdx=−21+1x1+1=−22x2=−x2 Combining all the terms, we have:
∫(x−2+3x−1+7−2x)dx=−x1+3ln∣x∣+7x−x2+C