We will use substitution.
Let u=4−x2. Then du=−2xdx, so xdx=−21du. Also, x2=4−u. Then the integral becomes
I=∫4−x2x2⋅xdx=∫u(4−u)(−21)du=−21∫u4−udu=−21∫(4u−1/2−u1/2)du Now, we can integrate term by term:
I=−21[4∫u−1/2du−∫u1/2du] Recall the power rule for integration: ∫xndx=n+1xn+1+C, for n=−1. I=−21[4⋅1/2u1/2−3/2u3/2]+C I=−21[8u1/2−32u3/2]+C I=−4u1/2+31u3/2+C Substitute back u=4−x2: I=−44−x2+31(4−x2)3/2+C I=4−x2[−4+31(4−x2)]+C I=4−x2[−4+34−3x2]+C I=4−x2[3−12+4−3x2]+C I=4−x2[−38−3x2]+C I=−31(8+x2)4−x2+C