The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}$ with respect to $x$.

AnalysisCalculusIntegrationIndefinite IntegralFunctions
2025/4/30

1. Problem Description

The problem asks us to calculate the indefinite integral of the function 1+3x+7x22x3x2\frac{1+3x+7x^2-2x^3}{x^2} with respect to xx.

2. Solution Steps

First, we simplify the expression by dividing each term in the numerator by x2x^2:
1+3x+7x22x3x2dx=(1x2+3xx2+7x2x22x3x2)dx\int \frac{1+3x+7x^2-2x^3}{x^2} \, dx = \int \left(\frac{1}{x^2} + \frac{3x}{x^2} + \frac{7x^2}{x^2} - \frac{2x^3}{x^2}\right) \, dx
This simplifies to:
(1x2+3x+72x)dx\int \left(\frac{1}{x^2} + \frac{3}{x} + 7 - 2x\right) \, dx
Which can also be written as:
(x2+3x+72x)dx\int \left(x^{-2} + \frac{3}{x} + 7 - 2x\right) \, dx
Now, we integrate each term separately:
x2dx=x11=1x\int x^{-2} \, dx = \frac{x^{-1}}{-1} = -\frac{1}{x}
3xdx=31xdx=3lnx\int \frac{3}{x} \, dx = 3 \int \frac{1}{x} \, dx = 3 \ln|x|
7dx=7x\int 7 \, dx = 7x
2xdx=2xdx=2x22=x2\int -2x \, dx = -2 \int x \, dx = -2 \cdot \frac{x^2}{2} = -x^2
Combining these results and adding the constant of integration CC, we get:
1x+3lnx+7xx2+C-\frac{1}{x} + 3 \ln|x| + 7x - x^2 + C

3. Final Answer

The final answer is 1x+3lnx+7xx2+C-\frac{1}{x} + 3\ln|x| + 7x - x^2 + C.

Related problems in "Analysis"

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

Integrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

Indefinite Integralu-substitutionCalculus
2025/4/30

We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

IntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30

The problem asks to evaluate the integral: $I = \int \frac{x^3}{\sqrt{4 - x^2}} dx$

IntegrationTrigonometric SubstitutionDefinite Integral
2025/4/30

The problem is to evaluate the following four integrals, showing two different methods for solving e...

IntegrationDefinite Integralsu-substitutionTrigonometric IdentitiesExponential IntegralCalculus
2025/4/29

We are given the function $f(x) = \ln|x^2 - 1|$. We need to find the domain, intercepts, limits, fir...

CalculusDomainLimitsDerivativesCritical PointsIncreasing and Decreasing IntervalsConcavityGraphing
2025/4/29