The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

AnalysisIndefinite Integralu-substitutionCalculus
2025/4/30

1. Problem Description

The problem asks us to evaluate the indefinite integral
I=x34x2dxI = \int \frac{x^3}{\sqrt{4-x^2}} dx.

2. Solution Steps

To solve the integral I=x34x2dxI = \int \frac{x^3}{\sqrt{4-x^2}} dx, we use u-substitution.
Let u=4x2u = 4 - x^2. Then du=2xdxdu = -2x dx, so xdx=12dux dx = -\frac{1}{2} du.
Also, x2=4ux^2 = 4 - u. Then we can rewrite the integral as
I=x24x2xdx=4uu(12)du=124uuduI = \int \frac{x^2}{\sqrt{4-x^2}} x dx = \int \frac{4-u}{\sqrt{u}} (-\frac{1}{2}) du = -\frac{1}{2} \int \frac{4-u}{\sqrt{u}} du.
I=12(4uuu)du=12(4u1/2u1/2)duI = -\frac{1}{2} \int (\frac{4}{\sqrt{u}} - \frac{u}{\sqrt{u}}) du = -\frac{1}{2} \int (4u^{-1/2} - u^{1/2}) du.
I=12(4u1/21/2u3/23/2)+C=12(8u1/223u3/2)+CI = -\frac{1}{2} (4 \cdot \frac{u^{1/2}}{1/2} - \frac{u^{3/2}}{3/2}) + C = -\frac{1}{2} (8u^{1/2} - \frac{2}{3} u^{3/2}) + C.
I=4u1/2+13u3/2+CI = -4u^{1/2} + \frac{1}{3} u^{3/2} + C.
Substitute u=4x2u = 4 - x^2:
I=44x2+13(4x2)3/2+C=44x2+13(4x2)4x2+CI = -4\sqrt{4-x^2} + \frac{1}{3} (4-x^2)^{3/2} + C = -4\sqrt{4-x^2} + \frac{1}{3} (4-x^2)\sqrt{4-x^2} + C.
I=4x2(4+13(4x2))+C=4x2(4+4313x2)+CI = \sqrt{4-x^2}(-4 + \frac{1}{3}(4-x^2)) + C = \sqrt{4-x^2}(-4 + \frac{4}{3} - \frac{1}{3}x^2) + C.
I=4x2(12+4313x2)+C=4x2(8313x2)+CI = \sqrt{4-x^2}(\frac{-12+4}{3} - \frac{1}{3}x^2) + C = \sqrt{4-x^2}(\frac{-8}{3} - \frac{1}{3}x^2) + C.
I=13(8+x2)4x2+CI = -\frac{1}{3}(8+x^2)\sqrt{4-x^2} + C.

3. Final Answer

I=13(x2+8)4x2+CI = -\frac{1}{3}(x^2+8)\sqrt{4-x^2} + C

Related problems in "Analysis"

The problem presents three parts, A, B, and C, involving functions $g(x)$, $h(x)$, $j(x)$, $k(x)$, a...

LogarithmsTrigonometryEquationsFunctionsExponential Functions
2025/4/30

The problem concerns the analysis of the function $f(x) = x^2 - x + \dots$. We are asked to: 1. Calc...

FunctionsDerivativesMonotonicityTangent LinesCalculus
2025/4/30

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

Integrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}...

CalculusIntegrationIndefinite IntegralFunctions
2025/4/30

We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

IntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30