Integral 1: ∫ x 2 ( x 3 + 1 ) 2 d x \int x^2(x^3+1)^2 dx ∫ x 2 ( x 3 + 1 ) 2 d x
Method 1: Expand and integrate term by term.
∫ x 2 ( x 3 + 1 ) 2 d x = ∫ x 2 ( x 6 + 2 x 3 + 1 ) d x = ∫ ( x 8 + 2 x 5 + x 2 ) d x = x 9 9 + 2 x 6 6 + x 3 3 + C = x 9 9 + x 6 3 + x 3 3 + C \int x^2(x^3+1)^2 dx = \int x^2(x^6+2x^3+1) dx = \int (x^8+2x^5+x^2) dx = \frac{x^9}{9} + \frac{2x^6}{6} + \frac{x^3}{3} + C = \frac{x^9}{9} + \frac{x^6}{3} + \frac{x^3}{3} + C ∫ x 2 ( x 3 + 1 ) 2 d x = ∫ x 2 ( x 6 + 2 x 3 + 1 ) d x = ∫ ( x 8 + 2 x 5 + x 2 ) d x = 9 x 9 + 6 2 x 6 + 3 x 3 + C = 9 x 9 + 3 x 6 + 3 x 3 + C
Method 2: u-substitution. Let u = x 3 + 1 u = x^3+1 u = x 3 + 1 , then d u = 3 x 2 d x du = 3x^2 dx d u = 3 x 2 d x , so x 2 d x = 1 3 d u x^2 dx = \frac{1}{3} du x 2 d x = 3 1 d u . ∫ x 2 ( x 3 + 1 ) 2 d x = ∫ u 2 1 3 d u = 1 3 ∫ u 2 d u = 1 3 u 3 3 + C = 1 9 ( x 3 + 1 ) 3 + C = 1 9 ( x 9 + 3 x 6 + 3 x 3 + 1 ) + C = x 9 9 + x 6 3 + x 3 3 + 1 9 + C = x 9 9 + x 6 3 + x 3 3 + C ′ \int x^2(x^3+1)^2 dx = \int u^2 \frac{1}{3} du = \frac{1}{3} \int u^2 du = \frac{1}{3} \frac{u^3}{3} + C = \frac{1}{9} (x^3+1)^3 + C = \frac{1}{9} (x^9 + 3x^6 + 3x^3 + 1) + C = \frac{x^9}{9} + \frac{x^6}{3} + \frac{x^3}{3} + \frac{1}{9} + C = \frac{x^9}{9} + \frac{x^6}{3} + \frac{x^3}{3} + C' ∫ x 2 ( x 3 + 1 ) 2 d x = ∫ u 2 3 1 d u = 3 1 ∫ u 2 d u = 3 1 3 u 3 + C = 9 1 ( x 3 + 1 ) 3 + C = 9 1 ( x 9 + 3 x 6 + 3 x 3 + 1 ) + C = 9 x 9 + 3 x 6 + 3 x 3 + 9 1 + C = 9 x 9 + 3 x 6 + 3 x 3 + C ′ (where C ′ = 1 9 + C C' = \frac{1}{9} + C C ′ = 9 1 + C )
Integral 2: ∫ e 5 + e x d x \int e^{\sqrt{5}+e^x} dx ∫ e 5 + e x d x
Method 1: Rewrite the integral.
∫ e 5 + e x d x = ∫ e 5 e e x d x = e 5 ∫ e e x d x \int e^{\sqrt{5}+e^x} dx = \int e^{\sqrt{5}} e^{e^x} dx = e^{\sqrt{5}} \int e^{e^x} dx ∫ e 5 + e x d x = ∫ e 5 e e x d x = e 5 ∫ e e x d x . Let u = e x u=e^x u = e x , then d u = e x d x du=e^x dx d u = e x d x , so d x = d u u dx=\frac{du}{u} d x = u d u . e 5 ∫ e u u d u e^{\sqrt{5}} \int \frac{e^u}{u} du e 5 ∫ u e u d u . The integral ∫ e u u d u \int \frac{e^u}{u} du ∫ u e u d u cannot be expressed in terms of elementary functions. It is an exponential integral denoted as E i ( u ) Ei(u) E i ( u ) . So, the solution is e 5 E i ( e x ) + C e^{\sqrt{5}}Ei(e^x)+C e 5 E i ( e x ) + C .
Method 2: Rewriting e 5 + e x e^{\sqrt{5}+e^x} e 5 + e x as e 5 e e x e^{\sqrt{5}}e^{e^x} e 5 e e x and then attempting integration by parts will not work. Use the exponential integral directly. Since ∫ e u u d u = E i ( u ) + C \int \frac{e^u}{u}du = Ei(u)+C ∫ u e u d u = E i ( u ) + C , then ∫ e e x d x = E i ( e x ) + C \int e^{e^x} dx = Ei(e^x)+C ∫ e e x d x = E i ( e x ) + C . Therefore, ∫ e 5 + e x d x = e 5 ∫ e e x d x = e 5 E i ( e x ) + C \int e^{\sqrt{5}+e^x} dx = e^{\sqrt{5}}\int e^{e^x} dx = e^{\sqrt{5}}Ei(e^x) + C ∫ e 5 + e x d x = e 5 ∫ e e x d x = e 5 E i ( e x ) + C .
Integral 3: ∫ sin ( x 4 ) cos ( x 4 ) d x \int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx ∫ sin ( 4 x ) cos ( 4 x ) d x
Method 1: Use the trigonometric identity sin ( 2 θ ) = 2 sin ( θ ) cos ( θ ) \sin(2\theta) = 2\sin(\theta)\cos(\theta) sin ( 2 θ ) = 2 sin ( θ ) cos ( θ ) , so sin ( θ ) cos ( θ ) = 1 2 sin ( 2 θ ) \sin(\theta)\cos(\theta) = \frac{1}{2}\sin(2\theta) sin ( θ ) cos ( θ ) = 2 1 sin ( 2 θ ) . ∫ sin ( x 4 ) cos ( x 4 ) d x = ∫ 1 2 sin ( 2 x 4 ) d x = 1 2 ∫ sin ( x 2 ) d x = 1 2 ( − 2 cos ( x 2 ) ) + C = − cos ( x 2 ) + C \int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx = \int \frac{1}{2} \sin(\frac{2x}{4}) dx = \frac{1}{2} \int \sin(\frac{x}{2}) dx = \frac{1}{2} (-2\cos(\frac{x}{2})) + C = -\cos(\frac{x}{2}) + C ∫ sin ( 4 x ) cos ( 4 x ) d x = ∫ 2 1 sin ( 4 2 x ) d x = 2 1 ∫ sin ( 2 x ) d x = 2 1 ( − 2 cos ( 2 x )) + C = − cos ( 2 x ) + C
Method 2: u-substitution. Let u = sin ( x 4 ) u = \sin(\frac{x}{4}) u = sin ( 4 x ) . Then d u = 1 4 cos ( x 4 ) d x du = \frac{1}{4} \cos(\frac{x}{4}) dx d u = 4 1 cos ( 4 x ) d x . ∫ sin ( x 4 ) cos ( x 4 ) d x = ∫ u ⋅ 4 d u = 4 ∫ u d u = 4 u 2 2 + C = 2 u 2 + C = 2 sin 2 ( x 4 ) + C \int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx = \int u \cdot 4 du = 4 \int u du = 4 \frac{u^2}{2} + C = 2u^2 + C = 2\sin^2(\frac{x}{4}) + C ∫ sin ( 4 x ) cos ( 4 x ) d x = ∫ u ⋅ 4 d u = 4 ∫ u d u = 4 2 u 2 + C = 2 u 2 + C = 2 sin 2 ( 4 x ) + C
We need to verify if − cos ( x 2 ) + C = 2 sin 2 ( x 4 ) + C ′ -\cos(\frac{x}{2}) + C = 2\sin^2(\frac{x}{4}) + C' − cos ( 2 x ) + C = 2 sin 2 ( 4 x ) + C ′ . Using the half-angle identity cos ( x ) = 1 − 2 sin 2 ( x 2 ) \cos(x) = 1 - 2\sin^2(\frac{x}{2}) cos ( x ) = 1 − 2 sin 2 ( 2 x ) , we have cos ( x 2 ) = 1 − 2 sin 2 ( x 4 ) \cos(\frac{x}{2}) = 1 - 2\sin^2(\frac{x}{4}) cos ( 2 x ) = 1 − 2 sin 2 ( 4 x ) . So, − cos ( x 2 ) + C = − ( 1 − 2 sin 2 ( x 4 ) ) + C = − 1 + 2 sin 2 ( x 4 ) + C = 2 sin 2 ( x 4 ) + ( C − 1 ) -\cos(\frac{x}{2}) + C = -(1 - 2\sin^2(\frac{x}{4})) + C = -1 + 2\sin^2(\frac{x}{4}) + C = 2\sin^2(\frac{x}{4}) + (C-1) − cos ( 2 x ) + C = − ( 1 − 2 sin 2 ( 4 x )) + C = − 1 + 2 sin 2 ( 4 x ) + C = 2 sin 2 ( 4 x ) + ( C − 1 ) . Therefore, C ′ = C − 1 C' = C-1 C ′ = C − 1 .
Integral 4: ∫ d x x − x \int \frac{dx}{x-\sqrt{x}} ∫ x − x d x
Method 1: u-substitution. Let u = x u = \sqrt{x} u = x . Then u 2 = x u^2 = x u 2 = x , so 2 u d u = d x 2u du = dx 2 u d u = d x . ∫ d x x − x = ∫ 2 u d u u 2 − u = ∫ 2 u d u u ( u − 1 ) = ∫ 2 u − 1 d u = 2 ln ∣ u − 1 ∣ + C = 2 ln ∣ x − 1 ∣ + C \int \frac{dx}{x-\sqrt{x}} = \int \frac{2u du}{u^2-u} = \int \frac{2u du}{u(u-1)} = \int \frac{2}{u-1} du = 2 \ln|u-1| + C = 2 \ln|\sqrt{x}-1| + C ∫ x − x d x = ∫ u 2 − u 2 u d u = ∫ u ( u − 1 ) 2 u d u = ∫ u − 1 2 d u = 2 ln ∣ u − 1∣ + C = 2 ln ∣ x − 1∣ + C
Method 2: Rewriting the integral
∫ d x x − x = ∫ d x x ( x − 1 ) \int \frac{dx}{x - \sqrt{x}} = \int \frac{dx}{\sqrt{x}(\sqrt{x}-1)} ∫ x − x d x = ∫ x ( x − 1 ) d x . Let u = x − 1 u=\sqrt{x}-1 u = x − 1 , then d u = 1 2 x d x du = \frac{1}{2\sqrt{x}}dx d u = 2 x 1 d x . This can be rewritten as d x = 2 x d u dx = 2\sqrt{x}du d x = 2 x d u . Therefore,
∫ d x x ( x − 1 ) = ∫ 2 x d u x u = ∫ 2 u d u = 2 ln ∣ u ∣ + C = 2 ln ∣ x − 1 ∣ + C \int \frac{dx}{\sqrt{x}(\sqrt{x}-1)} = \int \frac{2\sqrt{x}du}{\sqrt{x}u} = \int \frac{2}{u}du = 2\ln|u| + C = 2\ln|\sqrt{x}-1| + C ∫ x ( x − 1 ) d x = ∫ x u 2 x d u = ∫ u 2 d u = 2 ln ∣ u ∣ + C = 2 ln ∣ x − 1∣ + C .