The problem is to evaluate the following four integrals, showing two different methods for solving each one. Integral 1: $\int x^2(x^3+1)^2 dx$ Integral 2: $\int e^{\sqrt{5}+e^x} dx$ Integral 3: $\int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx$ Integral 4: $\int \frac{dx}{x-\sqrt{x}}$

AnalysisIntegrationDefinite Integralsu-substitutionTrigonometric IdentitiesExponential IntegralCalculus
2025/4/29

1. Problem Description

The problem is to evaluate the following four integrals, showing two different methods for solving each one.
Integral 1: x2(x3+1)2dx\int x^2(x^3+1)^2 dx
Integral 2: e5+exdx\int e^{\sqrt{5}+e^x} dx
Integral 3: sin(x4)cos(x4)dx\int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx
Integral 4: dxxx\int \frac{dx}{x-\sqrt{x}}

2. Solution Steps

Integral 1: x2(x3+1)2dx\int x^2(x^3+1)^2 dx
Method 1: Expand and integrate term by term.
x2(x3+1)2dx=x2(x6+2x3+1)dx=(x8+2x5+x2)dx=x99+2x66+x33+C=x99+x63+x33+C\int x^2(x^3+1)^2 dx = \int x^2(x^6+2x^3+1) dx = \int (x^8+2x^5+x^2) dx = \frac{x^9}{9} + \frac{2x^6}{6} + \frac{x^3}{3} + C = \frac{x^9}{9} + \frac{x^6}{3} + \frac{x^3}{3} + C
Method 2: u-substitution. Let u=x3+1u = x^3+1, then du=3x2dxdu = 3x^2 dx, so x2dx=13dux^2 dx = \frac{1}{3} du.
x2(x3+1)2dx=u213du=13u2du=13u33+C=19(x3+1)3+C=19(x9+3x6+3x3+1)+C=x99+x63+x33+19+C=x99+x63+x33+C\int x^2(x^3+1)^2 dx = \int u^2 \frac{1}{3} du = \frac{1}{3} \int u^2 du = \frac{1}{3} \frac{u^3}{3} + C = \frac{1}{9} (x^3+1)^3 + C = \frac{1}{9} (x^9 + 3x^6 + 3x^3 + 1) + C = \frac{x^9}{9} + \frac{x^6}{3} + \frac{x^3}{3} + \frac{1}{9} + C = \frac{x^9}{9} + \frac{x^6}{3} + \frac{x^3}{3} + C'
(where C=19+CC' = \frac{1}{9} + C)
Integral 2: e5+exdx\int e^{\sqrt{5}+e^x} dx
Method 1: Rewrite the integral.
e5+exdx=e5eexdx=e5eexdx\int e^{\sqrt{5}+e^x} dx = \int e^{\sqrt{5}} e^{e^x} dx = e^{\sqrt{5}} \int e^{e^x} dx.
Let u=exu=e^x, then du=exdxdu=e^x dx, so dx=duudx=\frac{du}{u}.
e5euudue^{\sqrt{5}} \int \frac{e^u}{u} du.
The integral euudu\int \frac{e^u}{u} du cannot be expressed in terms of elementary functions. It is an exponential integral denoted as Ei(u)Ei(u).
So, the solution is e5Ei(ex)+Ce^{\sqrt{5}}Ei(e^x)+C.
Method 2: Rewriting e5+exe^{\sqrt{5}+e^x} as e5eexe^{\sqrt{5}}e^{e^x} and then attempting integration by parts will not work.
Use the exponential integral directly. Since euudu=Ei(u)+C\int \frac{e^u}{u}du = Ei(u)+C, then eexdx=Ei(ex)+C\int e^{e^x} dx = Ei(e^x)+C.
Therefore, e5+exdx=e5eexdx=e5Ei(ex)+C\int e^{\sqrt{5}+e^x} dx = e^{\sqrt{5}}\int e^{e^x} dx = e^{\sqrt{5}}Ei(e^x) + C.
Integral 3: sin(x4)cos(x4)dx\int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx
Method 1: Use the trigonometric identity sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta), so sin(θ)cos(θ)=12sin(2θ)\sin(\theta)\cos(\theta) = \frac{1}{2}\sin(2\theta).
sin(x4)cos(x4)dx=12sin(2x4)dx=12sin(x2)dx=12(2cos(x2))+C=cos(x2)+C\int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx = \int \frac{1}{2} \sin(\frac{2x}{4}) dx = \frac{1}{2} \int \sin(\frac{x}{2}) dx = \frac{1}{2} (-2\cos(\frac{x}{2})) + C = -\cos(\frac{x}{2}) + C
Method 2: u-substitution. Let u=sin(x4)u = \sin(\frac{x}{4}). Then du=14cos(x4)dxdu = \frac{1}{4} \cos(\frac{x}{4}) dx.
sin(x4)cos(x4)dx=u4du=4udu=4u22+C=2u2+C=2sin2(x4)+C\int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx = \int u \cdot 4 du = 4 \int u du = 4 \frac{u^2}{2} + C = 2u^2 + C = 2\sin^2(\frac{x}{4}) + C
We need to verify if cos(x2)+C=2sin2(x4)+C-\cos(\frac{x}{2}) + C = 2\sin^2(\frac{x}{4}) + C'.
Using the half-angle identity cos(x)=12sin2(x2)\cos(x) = 1 - 2\sin^2(\frac{x}{2}), we have cos(x2)=12sin2(x4)\cos(\frac{x}{2}) = 1 - 2\sin^2(\frac{x}{4}).
So, cos(x2)+C=(12sin2(x4))+C=1+2sin2(x4)+C=2sin2(x4)+(C1)-\cos(\frac{x}{2}) + C = -(1 - 2\sin^2(\frac{x}{4})) + C = -1 + 2\sin^2(\frac{x}{4}) + C = 2\sin^2(\frac{x}{4}) + (C-1). Therefore, C=C1C' = C-1.
Integral 4: dxxx\int \frac{dx}{x-\sqrt{x}}
Method 1: u-substitution. Let u=xu = \sqrt{x}. Then u2=xu^2 = x, so 2udu=dx2u du = dx.
dxxx=2uduu2u=2uduu(u1)=2u1du=2lnu1+C=2lnx1+C\int \frac{dx}{x-\sqrt{x}} = \int \frac{2u du}{u^2-u} = \int \frac{2u du}{u(u-1)} = \int \frac{2}{u-1} du = 2 \ln|u-1| + C = 2 \ln|\sqrt{x}-1| + C
Method 2: Rewriting the integral
dxxx=dxx(x1)\int \frac{dx}{x - \sqrt{x}} = \int \frac{dx}{\sqrt{x}(\sqrt{x}-1)}.
Let u=x1u=\sqrt{x}-1, then du=12xdxdu = \frac{1}{2\sqrt{x}}dx. This can be rewritten as dx=2xdudx = 2\sqrt{x}du.
Therefore,
dxx(x1)=2xduxu=2udu=2lnu+C=2lnx1+C\int \frac{dx}{\sqrt{x}(\sqrt{x}-1)} = \int \frac{2\sqrt{x}du}{\sqrt{x}u} = \int \frac{2}{u}du = 2\ln|u| + C = 2\ln|\sqrt{x}-1| + C.

3. Final Answer

Integral 1: x2(x3+1)2dx=x99+x63+x33+C\int x^2(x^3+1)^2 dx = \frac{x^9}{9} + \frac{x^6}{3} + \frac{x^3}{3} + C (Method 1) or 19(x3+1)3+C\frac{1}{9} (x^3+1)^3 + C (Method 2)
Integral 2: e5+exdx=e5Ei(ex)+C\int e^{\sqrt{5}+e^x} dx = e^{\sqrt{5}}Ei(e^x) + C (Method 1 and 2). Ei(x)Ei(x) is the exponential integral function.
Integral 3: sin(x4)cos(x4)dx=cos(x2)+C\int \sin(\frac{x}{4}) \cos(\frac{x}{4}) dx = -\cos(\frac{x}{2}) + C (Method 1) or 2sin2(x4)+C2\sin^2(\frac{x}{4}) + C (Method 2)
Integral 4: dxxx=2lnx1+C\int \frac{dx}{x-\sqrt{x}} = 2 \ln|\sqrt{x}-1| + C (Method 1 and 2)

Related problems in "Analysis"

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

Integrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}...

CalculusIntegrationIndefinite IntegralFunctions
2025/4/30

The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

Indefinite Integralu-substitutionCalculus
2025/4/30

We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

IntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30

The problem asks to evaluate the integral: $I = \int \frac{x^3}{\sqrt{4 - x^2}} dx$

IntegrationTrigonometric SubstitutionDefinite Integral
2025/4/30

We are given the function $f(x) = \ln|x^2 - 1|$. We need to find the domain, intercepts, limits, fir...

CalculusDomainLimitsDerivativesCritical PointsIncreasing and Decreasing IntervalsConcavityGraphing
2025/4/29