The problem asks to evaluate the integral: $I = \int \frac{x^3}{\sqrt{4 - x^2}} dx$

AnalysisIntegrationTrigonometric SubstitutionDefinite Integral
2025/4/30

1. Problem Description

The problem asks to evaluate the integral:
I=x34x2dxI = \int \frac{x^3}{\sqrt{4 - x^2}} dx

2. Solution Steps

First, we make the trigonometric substitution x=2sinαx = 2 \sin \alpha.
Then dx=2cosαdαdx = 2 \cos \alpha \, d\alpha. Substituting these into the integral, we have:
I=(2sinα)34(2sinα)2(2cosα)dα=8sin3α44sin2α(2cosα)dαI = \int \frac{(2 \sin \alpha)^3}{\sqrt{4 - (2 \sin \alpha)^2}} (2 \cos \alpha) \, d\alpha = \int \frac{8 \sin^3 \alpha}{\sqrt{4 - 4 \sin^2 \alpha}} (2 \cos \alpha) \, d\alpha
I=16sin3αcosα4(1sin2α)dα=16sin3αcosα2cos2αdα=16sin3αcosα2cosαdαI = \int \frac{16 \sin^3 \alpha \cos \alpha}{\sqrt{4(1 - \sin^2 \alpha)}} \, d\alpha = \int \frac{16 \sin^3 \alpha \cos \alpha}{2 \sqrt{\cos^2 \alpha}} \, d\alpha = \int \frac{16 \sin^3 \alpha \cos \alpha}{2 \cos \alpha} \, d\alpha
I=8sin3αdα=8sin3αdαI = \int 8 \sin^3 \alpha \, d\alpha = 8 \int \sin^3 \alpha \, d\alpha
We know that sin3α=sinα(1cos2α)=sinαsinαcos2α\sin^3 \alpha = \sin \alpha (1 - \cos^2 \alpha) = \sin \alpha - \sin \alpha \cos^2 \alpha. Thus,
I=8(sinαsinαcos2α)dα=8sinαdα8sinαcos2αdαI = 8 \int (\sin \alpha - \sin \alpha \cos^2 \alpha) \, d\alpha = 8 \int \sin \alpha \, d\alpha - 8 \int \sin \alpha \cos^2 \alpha \, d\alpha
Let u=cosαu = \cos \alpha, then du=sinαdαdu = - \sin \alpha \, d\alpha. So the second integral becomes sinαcos2αdα=u2du=u33=cos3α3\int \sin \alpha \cos^2 \alpha \, d\alpha = - \int u^2 du = - \frac{u^3}{3} = - \frac{\cos^3 \alpha}{3}.
Therefore,
I=8(cosα)8(cos3α3)+C=8cosα+83cos3α+CI = 8(-\cos \alpha) - 8(-\frac{\cos^3 \alpha}{3}) + C = -8 \cos \alpha + \frac{8}{3} \cos^3 \alpha + C
Since x=2sinαx = 2 \sin \alpha, we have sinα=x2\sin \alpha = \frac{x}{2}, and cosα=1sin2α=1x24=4x22\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{x^2}{4}} = \frac{\sqrt{4 - x^2}}{2}.
Substituting this back into the expression for II, we get:
I=84x22+83(4x22)3+C=44x2+83(4x2)3/28+CI = -8 \frac{\sqrt{4 - x^2}}{2} + \frac{8}{3} (\frac{\sqrt{4 - x^2}}{2})^3 + C = -4 \sqrt{4 - x^2} + \frac{8}{3} \frac{(4 - x^2)^{3/2}}{8} + C
I=44x2+13(4x2)3/2+C=4x2(4+13(4x2))+CI = -4 \sqrt{4 - x^2} + \frac{1}{3} (4 - x^2)^{3/2} + C = \sqrt{4 - x^2} (-4 + \frac{1}{3} (4 - x^2)) + C
I=4x2(12+4x23)+C=4x2(8x23)+C=13(8+x2)4x2+CI = \sqrt{4 - x^2} (\frac{-12 + 4 - x^2}{3}) + C = \sqrt{4 - x^2} (\frac{-8 - x^2}{3}) + C = - \frac{1}{3} (8 + x^2) \sqrt{4 - x^2} + C

3. Final Answer

I=13(x2+8)4x2+CI = - \frac{1}{3} (x^2 + 8) \sqrt{4 - x^2} + C

Related problems in "Analysis"

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

Integrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}...

CalculusIntegrationIndefinite IntegralFunctions
2025/4/30

The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

Indefinite Integralu-substitutionCalculus
2025/4/30

We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

IntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30

The problem is to evaluate the following four integrals, showing two different methods for solving e...

IntegrationDefinite Integralsu-substitutionTrigonometric IdentitiesExponential IntegralCalculus
2025/4/29