The gradient ∇f of a scalar function f(x,y,z) is a vector given by: ∇f=(∂x∂f,∂y∂f,∂z∂f) We need to compute the partial derivatives of f(x,y,z)=x2y+y2z+z2x with respect to x, y, and z. ∂x∂f=∂x∂(x2y+y2z+z2x)=2xy+0+z2=2xy+z2 ∂y∂f=∂y∂(x2y+y2z+z2x)=x2+2yz+0=x2+2yz ∂z∂f=∂z∂(x2y+y2z+z2x)=0+y2+2zx=y2+2zx Therefore, the gradient is:
∇f=(2xy+z2,x2+2yz,y2+2zx)