We will use the trigonometric substitution x=tan(θ), which implies dx=sec2(θ)dθ. Then x2+1=tan2(θ)+1=sec2(θ). Substituting into the integral, we have:
J=∫(sec2(θ))2sec2(θ)dθ=∫sec4(θ)sec2(θ)dθ=∫sec2(θ)1dθ=∫cos2(θ)dθ. We use the identity cos2(θ)=21+cos(2θ) to simplify the integral. J=∫21+cos(2θ)dθ=21∫(1+cos(2θ))dθ=21(θ+21sin(2θ))+C. We can rewrite sin(2θ) as 2sin(θ)cos(θ). So, J=21θ+21sin(θ)cos(θ)+C. Since x=tan(θ), we have θ=arctan(x). Also, tan(θ)=1x. We can consider a right triangle where the opposite side is x and the adjacent side is 1. The hypotenuse is x2+1. Then sin(θ)=x2+1x and cos(θ)=x2+11. Therefore, sin(θ)cos(θ)=x2+1x. Substituting these back into our expression for J, we get J=21arctan(x)+21(x2+1x)+C=21arctan(x)+2(x2+1)x+C.