We are asked to evaluate the integral $J = \int \frac{dx}{(x^2 + 1)^2}$.

AnalysisIntegrationTrigonometric SubstitutionDefinite IntegralsCalculus
2025/4/28

1. Problem Description

We are asked to evaluate the integral J=dx(x2+1)2J = \int \frac{dx}{(x^2 + 1)^2}.

2. Solution Steps

We will use the trigonometric substitution x=tan(θ)x = \tan(\theta), which implies dx=sec2(θ)dθdx = \sec^2(\theta) d\theta.
Then x2+1=tan2(θ)+1=sec2(θ)x^2 + 1 = \tan^2(\theta) + 1 = \sec^2(\theta).
Substituting into the integral, we have:
J=sec2(θ)dθ(sec2(θ))2=sec2(θ)sec4(θ)dθ=1sec2(θ)dθ=cos2(θ)dθJ = \int \frac{\sec^2(\theta) d\theta}{(\sec^2(\theta))^2} = \int \frac{\sec^2(\theta)}{\sec^4(\theta)} d\theta = \int \frac{1}{\sec^2(\theta)} d\theta = \int \cos^2(\theta) d\theta.
We use the identity cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} to simplify the integral.
J=1+cos(2θ)2dθ=12(1+cos(2θ))dθ=12(θ+12sin(2θ))+CJ = \int \frac{1 + \cos(2\theta)}{2} d\theta = \frac{1}{2} \int (1 + \cos(2\theta)) d\theta = \frac{1}{2} \left( \theta + \frac{1}{2}\sin(2\theta) \right) + C.
We can rewrite sin(2θ)\sin(2\theta) as 2sin(θ)cos(θ)2\sin(\theta)\cos(\theta).
So, J=12θ+12sin(θ)cos(θ)+CJ = \frac{1}{2} \theta + \frac{1}{2} \sin(\theta)\cos(\theta) + C.
Since x=tan(θ)x = \tan(\theta), we have θ=arctan(x)\theta = \arctan(x).
Also, tan(θ)=x1\tan(\theta) = \frac{x}{1}. We can consider a right triangle where the opposite side is xx and the adjacent side is 11. The hypotenuse is x2+1\sqrt{x^2 + 1}.
Then sin(θ)=xx2+1\sin(\theta) = \frac{x}{\sqrt{x^2+1}} and cos(θ)=1x2+1\cos(\theta) = \frac{1}{\sqrt{x^2+1}}.
Therefore, sin(θ)cos(θ)=xx2+1\sin(\theta)\cos(\theta) = \frac{x}{x^2 + 1}.
Substituting these back into our expression for JJ, we get
J=12arctan(x)+12(xx2+1)+C=12arctan(x)+x2(x2+1)+CJ = \frac{1}{2} \arctan(x) + \frac{1}{2} \left(\frac{x}{x^2 + 1} \right) + C = \frac{1}{2} \arctan(x) + \frac{x}{2(x^2 + 1)} + C.

3. Final Answer

12arctan(x)+x2(x2+1)+C\frac{1}{2}\arctan(x) + \frac{x}{2(x^2+1)} + C

Related problems in "Analysis"

Find the directional derivative of the function $f(x, y, z) = x^2 + y^2 + z^2$ at the point $p = (1,...

Multivariable CalculusDirectional DerivativeGradientVector Calculus
2025/4/30

The problem asks us to find the directional derivative of the function $f(x, y, z) = x^3y - y^2z^2$ ...

Multivariable CalculusDirectional DerivativeGradient
2025/4/30

We are asked to find the gradient of the function $f(x, y, z) = xz \ln(x + y + z)$. The gradient is ...

Multivariable CalculusGradientPartial DerivativesLogarithmic Functions
2025/4/30

We are asked to find the gradient $\nabla f$ of the function $f(x, y, z) = x^2y + y^2z + z^2x$.

Multivariable CalculusGradientPartial DerivativesVector Calculus
2025/4/30

We need to find the limit of the function $f(x, y) = \frac{xy^2}{x^2 + y^4}$ as $(x, y)$ approaches ...

LimitsMultivariable CalculusPath DependenceFunctions of Several Variables
2025/4/30

The problem asks to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ a...

LimitsMultivariable CalculusTrigonometric Functions
2025/4/30

We are asked to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ appro...

LimitsMultivariable CalculusTrigonometric FunctionsL'Hopital's RuleSmall Angle Approximation
2025/4/30

The problem presents three parts, A, B, and C, involving functions $g(x)$, $h(x)$, $j(x)$, $k(x)$, a...

LogarithmsTrigonometryEquationsFunctionsExponential Functions
2025/4/30

The problem concerns the analysis of the function $f(x) = x^2 - x + \dots$. We are asked to: 1. Calc...

FunctionsDerivativesMonotonicityTangent LinesCalculus
2025/4/30

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30