We are given the limit $ \lim_{x \to \infty} (\sqrt[3]{x^3 + ax^2} - \sqrt[3]{bx^3 - 5x^2 + 1}) = 2 $ and we need to find the values of $a$ and $b$.

AnalysisLimitsCalculusBinomial ApproximationCube RootsAlgebra
2025/4/29

1. Problem Description

We are given the limit
limx(x3+ax23bx35x2+13)=2 \lim_{x \to \infty} (\sqrt[3]{x^3 + ax^2} - \sqrt[3]{bx^3 - 5x^2 + 1}) = 2
and we need to find the values of aa and bb.

2. Solution Steps

First, we factor out x3x^3 from each cube root:
limx(x3(1+ax)3x3(b5x+1x3)3)=2 \lim_{x \to \infty} (\sqrt[3]{x^3(1 + \frac{a}{x})} - \sqrt[3]{x^3(b - \frac{5}{x} + \frac{1}{x^3})}) = 2
limx(x1+ax3xb5x+1x33)=2 \lim_{x \to \infty} (x\sqrt[3]{1 + \frac{a}{x}} - x\sqrt[3]{b - \frac{5}{x} + \frac{1}{x^3}}) = 2
limxx(1+ax3b5x+1x33)=2 \lim_{x \to \infty} x(\sqrt[3]{1 + \frac{a}{x}} - \sqrt[3]{b - \frac{5}{x} + \frac{1}{x^3}}) = 2
For the limit to be finite and non-zero, the dominant terms must cancel each other. In other words, as xx \to \infty, xx must be multiplied by something that approaches 00. This implies that b=1b=1. If b1b \neq 1, the limit will either be \infty or -\infty. So, we assume b=1b=1 and proceed.
Now, let t=1/xt = 1/x. Then as xx \to \infty, t0t \to 0. The limit becomes
limt01+at315t+t33t=2 \lim_{t \to 0} \frac{\sqrt[3]{1 + at} - \sqrt[3]{1 - 5t + t^3}}{t} = 2
We can use the binomial approximation (1+x)n1+nx(1+x)^n \approx 1 + nx for small xx. Then
1+at3=(1+at)1/31+13at\sqrt[3]{1 + at} = (1 + at)^{1/3} \approx 1 + \frac{1}{3}at
15t+t33=(15t+t3)1/31+13(5t+t3)153t\sqrt[3]{1 - 5t + t^3} = (1 - 5t + t^3)^{1/3} \approx 1 + \frac{1}{3}(-5t + t^3) \approx 1 - \frac{5}{3}t
So the limit becomes
limt0(1+a3t)(153t)t=2 \lim_{t \to 0} \frac{(1 + \frac{a}{3}t) - (1 - \frac{5}{3}t)}{t} = 2
limt0a3t+53tt=2 \lim_{t \to 0} \frac{\frac{a}{3}t + \frac{5}{3}t}{t} = 2
limt0(a+53)tt=2 \lim_{t \to 0} \frac{(\frac{a+5}{3})t}{t} = 2
a+53=2 \frac{a+5}{3} = 2
a+5=6 a+5 = 6
a=1 a = 1
Therefore, a=1a=1 and b=1b=1.

3. Final Answer

a=1a = 1, b=1b = 1

Related problems in "Analysis"

Find the directional derivative of the function $f(x, y, z) = x^2 + y^2 + z^2$ at the point $p = (1,...

Multivariable CalculusDirectional DerivativeGradientVector Calculus
2025/4/30

The problem asks us to find the directional derivative of the function $f(x, y, z) = x^3y - y^2z^2$ ...

Multivariable CalculusDirectional DerivativeGradient
2025/4/30

We are asked to find the gradient of the function $f(x, y, z) = xz \ln(x + y + z)$. The gradient is ...

Multivariable CalculusGradientPartial DerivativesLogarithmic Functions
2025/4/30

We are asked to find the gradient $\nabla f$ of the function $f(x, y, z) = x^2y + y^2z + z^2x$.

Multivariable CalculusGradientPartial DerivativesVector Calculus
2025/4/30

We need to find the limit of the function $f(x, y) = \frac{xy^2}{x^2 + y^4}$ as $(x, y)$ approaches ...

LimitsMultivariable CalculusPath DependenceFunctions of Several Variables
2025/4/30

The problem asks to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ a...

LimitsMultivariable CalculusTrigonometric Functions
2025/4/30

We are asked to find the limit of the function $\frac{\tan(x^2 + y^2)}{x^2 + y^2}$ as $(x, y)$ appro...

LimitsMultivariable CalculusTrigonometric FunctionsL'Hopital's RuleSmall Angle Approximation
2025/4/30

The problem presents three parts, A, B, and C, involving functions $g(x)$, $h(x)$, $j(x)$, $k(x)$, a...

LogarithmsTrigonometryEquationsFunctionsExponential Functions
2025/4/30

The problem concerns the analysis of the function $f(x) = x^2 - x + \dots$. We are asked to: 1. Calc...

FunctionsDerivativesMonotonicityTangent LinesCalculus
2025/4/30

The problem consists of several parts related to the function $f(x) = x^2 - x + a$, where 'a' is a c...

FunctionsDerivativesMonotonicityTangentsQuadratic FunctionsCalculus
2025/4/30