$x = \frac{1}{\sqrt{5}-1}$、$y = \frac{1}{\sqrt{5}+1}$ のとき、以下の値を求めます。 (1) $x+y$ および $xy$ (2) $x^2+y^2$代数学式の計算有理化平方根式の値2025/4/291. 問題の内容x=15−1x = \frac{1}{\sqrt{5}-1}x=5−11、y=15+1y = \frac{1}{\sqrt{5}+1}y=5+11 のとき、以下の値を求めます。(1) x+yx+yx+y および xyxyxy(2) x2+y2x^2+y^2x2+y22. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=15−1=15−1⋅5+15+1=5+15−1=5+14x = \frac{1}{\sqrt{5}-1} = \frac{1}{\sqrt{5}-1} \cdot \frac{\sqrt{5}+1}{\sqrt{5}+1} = \frac{\sqrt{5}+1}{5-1} = \frac{\sqrt{5}+1}{4}x=5−11=5−11⋅5+15+1=5−15+1=45+1y=15+1=15+1⋅5−15−1=5−15−1=5−14y = \frac{1}{\sqrt{5}+1} = \frac{1}{\sqrt{5}+1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1} = \frac{\sqrt{5}-1}{5-1} = \frac{\sqrt{5}-1}{4}y=5+11=5+11⋅5−15−1=5−15−1=45−1(1) x+yx+yx+y を計算します。x+y=5+14+5−14=5+1+5−14=254=52x+y = \frac{\sqrt{5}+1}{4} + \frac{\sqrt{5}-1}{4} = \frac{\sqrt{5}+1+\sqrt{5}-1}{4} = \frac{2\sqrt{5}}{4} = \frac{\sqrt{5}}{2}x+y=45+1+45−1=45+1+5−1=425=25次に、xyxyxy を計算します。xy=5+14⋅5−14=(5)2−1216=5−116=416=14xy = \frac{\sqrt{5}+1}{4} \cdot \frac{\sqrt{5}-1}{4} = \frac{(\sqrt{5})^2 - 1^2}{16} = \frac{5-1}{16} = \frac{4}{16} = \frac{1}{4}xy=45+1⋅45−1=16(5)2−12=165−1=164=41(2) x2+y2x^2+y^2x2+y2 を計算します。x2+y2=(x+y)2−2xyx^2+y^2 = (x+y)^2 - 2xyx2+y2=(x+y)2−2xyx2+y2=(52)2−2⋅14=54−24=34x^2+y^2 = (\frac{\sqrt{5}}{2})^2 - 2 \cdot \frac{1}{4} = \frac{5}{4} - \frac{2}{4} = \frac{3}{4}x2+y2=(25)2−2⋅41=45−42=433. 最終的な答え(1) x+y=52x+y = \frac{\sqrt{5}}{2}x+y=25 , xy=14xy = \frac{1}{4}xy=41(2) x2+y2=34x^2+y^2 = \frac{3}{4}x2+y2=43