与えられた2つの式を因数分解する問題です。 (1) $x^2+3xy+2y^2+2x+5y-3$ (2) $3x^2-xy-2y^2+6x-y+3$代数学因数分解多項式2025/4/301. 問題の内容与えられた2つの式を因数分解する問題です。(1) x2+3xy+2y2+2x+5y−3x^2+3xy+2y^2+2x+5y-3x2+3xy+2y2+2x+5y−3(2) 3x2−xy−2y2+6x−y+33x^2-xy-2y^2+6x-y+33x2−xy−2y2+6x−y+32. 解き方の手順(1) x2+3xy+2y2+2x+5y−3x^2+3xy+2y^2+2x+5y-3x2+3xy+2y2+2x+5y−3まず、xxxの2次式として整理します。x2+(3y+2)x+(2y2+5y−3)x^2 + (3y+2)x + (2y^2+5y-3)x2+(3y+2)x+(2y2+5y−3)次に、2y2+5y−32y^2+5y-32y2+5y−3を因数分解します。2y2+5y−3=(2y−1)(y+3)2y^2+5y-3 = (2y-1)(y+3)2y2+5y−3=(2y−1)(y+3)したがって、x2+(3y+2)x+(2y−1)(y+3)x^2 + (3y+2)x + (2y-1)(y+3)x2+(3y+2)x+(2y−1)(y+3)x2+(2y−1+y+3)x+(2y−1)(y+3)x^2 + (2y-1+y+3)x + (2y-1)(y+3)x2+(2y−1+y+3)x+(2y−1)(y+3)=(x+(2y−1))(x+(y+3))= (x+(2y-1))(x+(y+3))=(x+(2y−1))(x+(y+3))=(x+2y−1)(x+y+3)= (x+2y-1)(x+y+3)=(x+2y−1)(x+y+3)(2) 3x2−xy−2y2+6x−y+33x^2-xy-2y^2+6x-y+33x2−xy−2y2+6x−y+3まず、xxxの2次式として整理します。3x2+(−y+6)x+(−2y2−y+3)3x^2+(-y+6)x+(-2y^2-y+3)3x2+(−y+6)x+(−2y2−y+3)次に、−2y2−y+3-2y^2-y+3−2y2−y+3を因数分解します。−2y2−y+3=−(2y2+y−3)=−(2y+3)(y−1)=(2y+3)(1−y)-2y^2-y+3 = -(2y^2+y-3) = -(2y+3)(y-1) = (2y+3)(1-y)−2y2−y+3=−(2y2+y−3)=−(2y+3)(y−1)=(2y+3)(1−y)したがって、3x2+(−y+6)x−(2y+3)(y−1)3x^2+(-y+6)x-(2y+3)(y-1)3x2+(−y+6)x−(2y+3)(y−1)たすき掛けで因数分解できるか試します。(3x+ay+b)(x+cy+d)=3x2+(a+3c)xy+acy2+(3d+b)x+(ad+bc)y+bd(3x + ay + b)(x + cy + d) = 3x^2 + (a+3c)xy + ac y^2 + (3d+b)x + (ad+bc)y + bd(3x+ay+b)(x+cy+d)=3x2+(a+3c)xy+acy2+(3d+b)x+(ad+bc)y+bdac=−2ac = -2ac=−2, bd=3bd = 3bd=3となるように、a,b,c,da,b,c,da,b,c,dを選びます。ac=−2y2−y+3=−(2y2+y−3)=−(2y+3)(y−1)ac = -2y^2-y+3 = -(2y^2+y-3) = -(2y+3)(y-1)ac=−2y2−y+3=−(2y2+y−3)=−(2y+3)(y−1)3x2+(−y+6)x+(−2y2−y+3)3x^2+(-y+6)x+(-2y^2-y+3)3x2+(−y+6)x+(−2y2−y+3)3x2+(−y+6)x−(2y+3)(y−1)3x^2+(-y+6)x-(2y+3)(y-1)3x2+(−y+6)x−(2y+3)(y−1)3x2+(−y+6)x+(2y+3)(1−y)3x^2+(-y+6)x+(2y+3)(1-y)3x2+(−y+6)x+(2y+3)(1−y)(3x+(2y+3))(x+(1−y))=3x2+3x−3xy+2xy+2y+3x+3−3y=3x2−xy+6x−y+3(3x+(2y+3))(x+(1-y)) = 3x^2 + 3x - 3xy + 2xy + 2y + 3x + 3 - 3y = 3x^2 - xy + 6x -y + 3(3x+(2y+3))(x+(1−y))=3x2+3x−3xy+2xy+2y+3x+3−3y=3x2−xy+6x−y+3(3x−(y−1))(x+(2y+3))=3x2+6x+9−xy−2y2−3y+x+2y+3=3x2−xy−2y2+6x−y+3(3x - (y-1))(x + (2y+3)) = 3x^2 + 6x + 9 -xy - 2y^2 -3y+x+2y+3 = 3x^2 -xy-2y^2+6x-y+3(3x−(y−1))(x+(2y+3))=3x2+6x+9−xy−2y2−3y+x+2y+3=3x2−xy−2y2+6x−y+3よって(3x+2y+3)(x−y+1)(3x+2y+3)(x-y+1)(3x+2y+3)(x−y+1)3. 最終的な答え(1) (x+2y−1)(x+y+3)(x+2y-1)(x+y+3)(x+2y−1)(x+y+3)(2) (3x+2y+3)(x−y+1)(3x+2y+3)(x-y+1)(3x+2y+3)(x−y+1)