加法定理を用いて、$\sin 195^\circ$, $\cos 195^\circ$, $\tan 195^\circ$の値を求めよ。代数学三角関数加法定理三角比2025/5/51. 問題の内容加法定理を用いて、sin195∘\sin 195^\circsin195∘, cos195∘\cos 195^\circcos195∘, tan195∘\tan 195^\circtan195∘の値を求めよ。2. 解き方の手順195∘=150∘+45∘195^\circ = 150^\circ + 45^\circ195∘=150∘+45∘と分解して、加法定理を用いる。(1) sin195∘\sin 195^\circsin195∘ の計算sin(A+B)=sinAcosB+cosAsinB\sin (A+B) = \sin A \cos B + \cos A \sin Bsin(A+B)=sinAcosB+cosAsinB を用いる。sin195∘=sin(150∘+45∘)=sin150∘cos45∘+cos150∘sin45∘\sin 195^\circ = \sin (150^\circ + 45^\circ) = \sin 150^\circ \cos 45^\circ + \cos 150^\circ \sin 45^\circsin195∘=sin(150∘+45∘)=sin150∘cos45∘+cos150∘sin45∘sin150∘=12\sin 150^\circ = \frac{1}{2}sin150∘=21, cos45∘=22\cos 45^\circ = \frac{\sqrt{2}}{2}cos45∘=22, cos150∘=−32\cos 150^\circ = -\frac{\sqrt{3}}{2}cos150∘=−23, sin45∘=22\sin 45^\circ = \frac{\sqrt{2}}{2}sin45∘=22 なので、sin195∘=12⋅22+(−32)⋅22=24−64=2−64\sin 195^\circ = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + (-\frac{\sqrt{3}}{2}) \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} = \frac{\sqrt{2} - \sqrt{6}}{4}sin195∘=21⋅22+(−23)⋅22=42−46=42−6(2) cos195∘\cos 195^\circcos195∘ の計算cos(A+B)=cosAcosB−sinAsinB\cos (A+B) = \cos A \cos B - \sin A \sin Bcos(A+B)=cosAcosB−sinAsinB を用いる。cos195∘=cos(150∘+45∘)=cos150∘cos45∘−sin150∘sin45∘\cos 195^\circ = \cos (150^\circ + 45^\circ) = \cos 150^\circ \cos 45^\circ - \sin 150^\circ \sin 45^\circcos195∘=cos(150∘+45∘)=cos150∘cos45∘−sin150∘sin45∘cos150∘=−32\cos 150^\circ = -\frac{\sqrt{3}}{2}cos150∘=−23, cos45∘=22\cos 45^\circ = \frac{\sqrt{2}}{2}cos45∘=22, sin150∘=12\sin 150^\circ = \frac{1}{2}sin150∘=21, sin45∘=22\sin 45^\circ = \frac{\sqrt{2}}{2}sin45∘=22 なので、cos195∘=(−32)⋅22−12⋅22=−64−24=−6−24=−6+24\cos 195^\circ = (-\frac{\sqrt{3}}{2}) \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = -\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{-\sqrt{6} - \sqrt{2}}{4} = -\frac{\sqrt{6} + \sqrt{2}}{4}cos195∘=(−23)⋅22−21⋅22=−46−42=4−6−2=−46+2(3) tan195∘\tan 195^\circtan195∘ の計算tan195∘=sin195∘cos195∘\tan 195^\circ = \frac{\sin 195^\circ}{\cos 195^\circ}tan195∘=cos195∘sin195∘ を用いる。tan195∘=2−64−6+24=2−6−(6+2)=6−26+2\tan 195^\circ = \frac{\frac{\sqrt{2} - \sqrt{6}}{4}}{-\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{\sqrt{2} - \sqrt{6}}{-(\sqrt{6} + \sqrt{2})} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}tan195∘=−46+242−6=−(6+2)2−6=6+26−2分母の有理化を行う。tan195∘=(6−2)(6−2)(6+2)(6−2)=6−212+26−2=8−434=2−3\tan 195^\circ = \frac{(\sqrt{6} - \sqrt{2})(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{6 - 2\sqrt{12} + 2}{6 - 2} = \frac{8 - 4\sqrt{3}}{4} = 2 - \sqrt{3}tan195∘=(6+2)(6−2)(6−2)(6−2)=6−26−212+2=48−43=2−33. 最終的な答えsin195∘=2−64\sin 195^\circ = \frac{\sqrt{2} - \sqrt{6}}{4}sin195∘=42−6cos195∘=−6+24\cos 195^\circ = -\frac{\sqrt{6} + \sqrt{2}}{4}cos195∘=−46+2tan195∘=2−3\tan 195^\circ = 2 - \sqrt{3}tan195∘=2−3