曲線 $y = -3x^2$ 上の点 $(-3, -27)$ における接線の傾きを求めよ。

解析学微分接線導関数
2025/5/5

1. 問題の内容

曲線 y=3x2y = -3x^2 上の点 (3,27)(-3, -27) における接線の傾きを求めよ。

2. 解き方の手順

まず、与えられた関数 y=3x2y = -3x^2 を微分して、導関数を求めます。
導関数は、曲線の各点における接線の傾きを表します。
y=dydx=3(2x)=6xy' = \frac{dy}{dx} = -3(2x) = -6x
次に、与えられた点 (3,27)(-3, -27)xx 座標である x=3x = -3 を導関数に代入して、その点における接線の傾きを計算します。
y(3)=6(3)=18y'(-3) = -6(-3) = 18
したがって、曲線 y=3x2y = -3x^2 上の点 (3,27)(-3, -27) における接線の傾きは18です。

3. 最終的な答え

18

「解析学」の関連問題

## 1. 問題の内容

極限三角関数指数関数微分
2025/5/7

数列 $\{a_n\}$ の極限を求める問題です。 (1) 初項 $a_1 = 1$、漸化式 $a_{n+1} = -\frac{4}{5}a_n - \frac{18}{5}$ で定義される数列 $...

数列極限漸化式等比数列
2025/5/7

関数 $y = (3x-1)e^{2x}$ の導関数を求める問題です。

導関数積の微分法指数関数連鎖律
2025/5/7

数列 $\{a_n\}$ の極限を求める問題です。 (1) $a_1 = 1$, $a_{n+1} = -\frac{4}{5} a_n - \frac{18}{5}$ (2) $a_1 = 1$, ...

数列極限漸化式等比数列
2025/5/7

与えられた関数を微分する問題です。問題は4つあります。 (1) $y = \frac{2}{\sqrt[3]{x}} + \frac{4}{\sqrt[3]{x^2}} - \frac{6}{\sqr...

微分関数の微分指数関数分数関数
2025/5/7

関数 $y = \frac{2}{\sqrt{x^3}} + \frac{4}{\sqrt[3]{x}} - \frac{6}{\sqrt[4]{x}}$ を微分して、$dy/dx$ を求めます。

微分関数の微分指数関数分数
2025/5/7

与えられた関数を公式3.4を用いて微分する問題です。関数は以下の4つです。 (1) $y = (2x-1)^5$ (2) $y = \frac{2}{(x^2 - x + 1)^3}$ (3) $y ...

微分合成関数の微分関数の微分
2025/5/7

三角関数の合成に関する問題です。与えられた式 $\sqrt{3}\sin\theta + \cos\theta$ を合成し、合成後の式と$\theta$の範囲から$\theta$の値を求め、大小関係を...

三角関数三角関数の合成方程式sin関数arcsin関数
2025/5/7

与えられた関数を微分する問題です。具体的には以下の4つの関数を微分します。 (1) $y = \frac{2}{x^2-1}$ (2) $y = \frac{5x}{2x-3}$ (3) $y = \...

微分合成関数の微分商の微分
2025/5/7

与えられた関数 $y$ を、積の微分公式を用いて微分する問題です。 (1) $y = (4x+3)(5x-2)$ (2) $y = (x^3+1)(x^2+x+1)$ (3) $y = (\frac{...

微分積の微分公式関数の微分
2025/5/7