与えられた立体の体積を求める問題です。立体は底面が正方形で、高さが3cmの四角錐です。底面の一辺の長さは8cmです。

幾何学体積四角錐図形
2025/5/6

1. 問題の内容

与えられた立体の体積を求める問題です。立体は底面が正方形で、高さが3cmの四角錐です。底面の一辺の長さは8cmです。

2. 解き方の手順

まず、四角錐の体積を求める公式を思い出します。四角錐の体積 VV は、底面積 AA と高さ hh を用いて、
V=13AhV = \frac{1}{3}Ah
で表されます。
次に、底面積 AA を求めます。底面は一辺の長さが8cmの正方形なので、底面積は
A=8×8=64cm2A = 8 \times 8 = 64 \, \text{cm}^2
となります。
最後に、体積 VV を計算します。高さ hh は3cmなので、
V=13×64×3=64cm3V = \frac{1}{3} \times 64 \times 3 = 64 \, \text{cm}^3
となります。

3. 最終的な答え

64 cm³

「幾何学」の関連問題

図Iのような円弧の一部を切り取った同形同大の図形が6個あります。各図形の両端を結んだ直線が、平行および垂直になるようにこれら6個の図形を並べると図IIのようになり、このとき、幅の一番短い部分が4cm、...

面積図形正六角形円弧正方形
2025/6/15

座標平面上に点 $A(0,5)$ と、点 $(0,2)$ を中心とし半径が2である円 $C$ がある。点 $P$ が円 $C$ 上を動くとき、線分 $AP$ を $1:2$ に外分する点の軌跡が直線 ...

軌跡外分座標平面距離
2025/6/15

半径 $a$ の円A、半径 $b$ の円Bがある。これらの円を含む円Oがあり、円Oから円Aと円Bを取り除いた色のついた部分の面積を、$a$と$b$を使って表す問題です。図から、円Oの半径は $a+b$...

面積図形
2025/6/15

$xy$平面上に、点$(4, 3)$を中心とする半径1の円と直線$y = mx$が共有点を持つとき、定数$m$のとりうる最大値を求めよ。

直線共有点点と直線の距離二次不等式
2025/6/15

空間ベクトル $\vec{a}$, $\vec{p}$, $\vec{q}$ が与えられており、 $\vec{a} = (\frac{1}{2}, \frac{\sqrt{3}}{2}, 0)$, $...

ベクトル空間ベクトル内積四面体体積
2025/6/15

空間のベクトル $\vec{a} = (\frac{1}{2}, \frac{\sqrt{3}}{2}, 0)$, $\vec{p} = (1, \frac{\sqrt{3}}{3}, 1)$, $\...

ベクトル空間ベクトル内積外積体積四面体
2025/6/15

$0 < a < b$ とする。点 $F(a, 0)$ からの距離と、直線 $x = \frac{b^2}{a}$ からの距離の比が $a : b$ である点 $P$ の軌跡を求めよ。

軌跡楕円距離座標平面
2025/6/14

2つの直線 $y = 2x - 1$ と $y = \frac{1}{3}x + 1$ のなす角 $\theta$ を求めます。ただし、$0 < \theta < \frac{\pi}{2}$ です。

直線角度傾き三角関数
2025/6/14

一辺の長さが6の正方形ABCDがある。点Pが毎秒2の速さで頂点Bを出発し、C, Dを通ってAまで進む。点PがBを出発してx秒後のAPの長さの2乗をyとする。 (1) yをxの関数として表せ。 (2) ...

正方形三平方の定理二次関数場合分け
2025/6/14

$0 \le \theta < 2\pi$ のとき、次の不等式を解く問題です。 (1) $\cos \theta \le \frac{1}{2}$

三角関数不等式単位円三角不等式
2025/6/14