問題は、$(x+3y)(x^2-3xy+9y^2)$ を展開し、簡略化することです。

代数学式の展開因数分解多項式
2025/5/7

1. 問題の内容

問題は、(x+3y)(x23xy+9y2)(x+3y)(x^2-3xy+9y^2) を展開し、簡略化することです。

2. 解き方の手順

この式は、a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)の因数分解の公式を利用して解くことができます。
ここでは、a=xa = xb=3yb = 3y と考えます。
すると、与えられた式は、(x+3y)(x2x(3y)+(3y)2)(x+3y)(x^2 - x(3y) + (3y)^2) となり、a3+b3a^3+b^3 の形に当てはまります。
a3+b3=x3+(3y)3a^3 + b^3 = x^3 + (3y)^3
(3y)3(3y)^3 を計算すると、 27y327y^3 になります。

3. 最終的な答え

x3+27y3x^3 + 27y^3

「代数学」の関連問題

画像から判断するに、与えられた式を簡略化する問題です。式は次の通りです。 $3 + 2x - x^2 = 0$

二次方程式因数分解方程式の解
2025/5/10

与えられた式を簡約化する問題です。式は $x^3 + x^2 - x^2 - 2$ です。

式の簡約化多項式
2025/5/10

以下の2つの連立方程式が同じ解を持つとき、$a$と$b$の値を求めます。 $\begin{cases} -x + 2y = 8 \\ ax - by = -9 \end{cases}$ $\begin...

連立方程式代入法方程式の解
2025/5/10

2つの連立方程式 $\begin{cases} -x + 2y = 8 \\ ax - by = -9 \end{cases}$ と $\begin{cases} -2x + y = 7 \\ -bx...

連立方程式代入法連立方程式の解
2025/5/10

単項式 $-4x^3y^2$ について、$x$ に着目したときの、係数と次数を求める問題です。

単項式係数次数多項式
2025/5/10

多項式 $4x^2 + x - 5y^3 - 2$ について、$y$に着目したとき、この多項式は何次式であるか、また定数項は何かを答える問題です。

多項式次数定数項
2025/5/10

与えられた式 $4x^2 - y^2 + 2y - 1$ を因数分解する問題です。

因数分解多項式平方の差
2025/5/10

多項式 $4x^2 + x - 5y^3 - 2$ について、$x$ に着目したとき、この多項式は何次式であるか、また定数項は何かを答える問題です。

多項式次数定数項
2025/5/10

単項式 $-4x^3y^2$ について、$y$に着目したときの係数と次数を求める問題です。

単項式係数次数文字式
2025/5/10

連立方程式 $ax + by = 5$ $ax - by = -1$ の解が $x=2, y=-1$ であるとき、$a$ と $b$ の値を求めよ。

連立方程式代入方程式の解
2025/5/10