画像から判断するに、与えられた式を簡略化する問題です。式は次の通りです。 $3 + 2x - x^2 = 0$

代数学二次方程式因数分解方程式の解
2025/5/10

1. 問題の内容

画像から判断するに、与えられた式を簡略化する問題です。式は次の通りです。
3+2xx2=03 + 2x - x^2 = 0

2. 解き方の手順

この式は二次方程式なので、解を求めるにはいくつかの方法があります。ここでは因数分解を試みます。
まず、式を整理して、x2x^2 の係数を正にします。
x22x3=0x^2 - 2x - 3 = 0
次に、因数分解します。
(x3)(x+1)=0(x - 3)(x + 1) = 0
したがって、x3=0x - 3 = 0 または x+1=0x + 1 = 0 です。
それぞれの式を解くと、x=3x = 3 または x=1x = -1 が得られます。

3. 最終的な答え

x=3,1x = 3, -1

「代数学」の関連問題

与えられた単項式において、指定された文字に着目したときの係数と次数を求める問題です。 (1) $-abx^2$ の $a$ に着目 (2) $-3ax^5y^3$ の $x$ と $y$ に着目

単項式係数次数文字に着目
2025/5/10

(1) $a, b, c, d$ が正の数で $a > b, c > d$ のとき、$ac > bd$ であることを証明する。 (2) $x > y$ のとき、$\frac{x+2y}{3} > \f...

不等式証明
2025/5/10

二次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとします。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が-18となるか。 (2) グラフAをどの点について対称...

二次関数平行移動対称移動共有点
2025/5/10

2次方程式 $x^2 + 3x - 1 = 0$ の2つの解を$\alpha$, $\beta$とするとき、以下の値を求めます。 (1) $\alpha^2 + \beta^2$ (2) $(\alp...

二次方程式解と係数の関係式の計算
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAを平行移動して、原点を通り、最小値が-18となるようにするには、どのように平行移動すればよいか。 (2)...

二次関数グラフ平行移動対称移動共有点
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAを平行移動して原点を通り、最小値が-18となるような平行移動を求める。 (2) グラフAをある点について...

二次関数グラフ平行移動対称移動共有点
2025/5/10

与えられた2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。以下の3つの問いに答える。 (1) グラフAを平行移動して、原点を通り、最小値が -18 となるようにするには、...

二次関数グラフの平行移動グラフの対称移動共有点平方完成
2025/5/10

問題2:放物線を $x$ 軸方向に2, $y$ 軸方向に-3だけ平行移動し、さらに $x$ 軸に関して対称移動したところ、$y = -2x^2 - 3x + 4$ になった。もとの放物線の方程式を求め...

二次関数放物線平行移動対称移動グラフ
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAとする。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が-18となるか。 (2) グラフAをどの点について対称移...

二次関数平行移動対称移動共有点
2025/5/10

2次関数 $y = 2x^2 + 8x + 12$ のグラフをグラフAと呼ぶ。 (1) グラフAをどのように平行移動すれば、原点を通り、最小値が -18 となるか。 (2) グラフAをどの点について対...

二次関数平行移動対称移動グラフ共有点二次方程式
2025/5/10