定積分 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \sin 3x \, dx$ の値を求めます。解析学定積分三角関数積和の公式2025/5/71. 問題の内容定積分 ∫π6π2sinxsin3x dx\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \sin 3x \, dx∫6π2πsinxsin3xdx の値を求めます。2. 解き方の手順積和の公式 sinAsinB=12[cos(A−B)−cos(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]sinAsinB=21[cos(A−B)−cos(A+B)] を用いて、被積分関数を変形します。sinxsin3x=12[cos(x−3x)−cos(x+3x)]=12[cos(−2x)−cos(4x)]=12[cos(2x)−cos(4x)]\sin x \sin 3x = \frac{1}{2} [\cos(x - 3x) - \cos(x + 3x)] = \frac{1}{2} [\cos(-2x) - \cos(4x)] = \frac{1}{2} [\cos(2x) - \cos(4x)]sinxsin3x=21[cos(x−3x)−cos(x+3x)]=21[cos(−2x)−cos(4x)]=21[cos(2x)−cos(4x)]したがって、積分は次のようになります。∫π6π2sinxsin3x dx=∫π6π212[cos(2x)−cos(4x)] dx=12∫π6π2[cos(2x)−cos(4x)] dx\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \sin 3x \, dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2} [\cos(2x) - \cos(4x)] \, dx = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [\cos(2x) - \cos(4x)] \, dx∫6π2πsinxsin3xdx=∫6π2π21[cos(2x)−cos(4x)]dx=21∫6π2π[cos(2x)−cos(4x)]dx12∫π6π2[cos(2x)−cos(4x)] dx=12[12sin(2x)−14sin(4x)]π6π2\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} [\cos(2x) - \cos(4x)] \, dx = \frac{1}{2} \left[ \frac{1}{2} \sin(2x) - \frac{1}{4} \sin(4x) \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}21∫6π2π[cos(2x)−cos(4x)]dx=21[21sin(2x)−41sin(4x)]6π2π=12[(12sin(π)−14sin(2π))−(12sin(π3)−14sin(2π3))]= \frac{1}{2} \left[ \left(\frac{1}{2} \sin(\pi) - \frac{1}{4} \sin(2\pi) \right) - \left(\frac{1}{2} \sin(\frac{\pi}{3}) - \frac{1}{4} \sin(\frac{2\pi}{3}) \right) \right]=21[(21sin(π)−41sin(2π))−(21sin(3π)−41sin(32π))]=12[(0−0)−(12⋅32−14⋅32)]=12[−(34−38)]=12[−38]=−316= \frac{1}{2} \left[ (0 - 0) - \left(\frac{1}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{4} \cdot \frac{\sqrt{3}}{2} \right) \right] = \frac{1}{2} \left[ - \left(\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{8} \right) \right] = \frac{1}{2} \left[ - \frac{\sqrt{3}}{8} \right] = - \frac{\sqrt{3}}{16}=21[(0−0)−(21⋅23−41⋅23)]=21[−(43−83)]=21[−83]=−163ただし、計算ミスがないか確認します。∫π6π2sinxsin3x dx=12[12sin(2x)−14sin(4x)]π6π2\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \sin 3x \, dx = \frac{1}{2} \left[ \frac{1}{2} \sin(2x) - \frac{1}{4} \sin(4x) \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}∫6π2πsinxsin3xdx=21[21sin(2x)−41sin(4x)]6π2π=12[(12sin(π)−14sin(2π))−(12sin(π3)−14sin(2π3))]= \frac{1}{2} \left[ \left( \frac{1}{2} \sin(\pi) - \frac{1}{4} \sin(2\pi) \right) - \left( \frac{1}{2} \sin(\frac{\pi}{3}) - \frac{1}{4} \sin(\frac{2\pi}{3}) \right) \right]=21[(21sin(π)−41sin(2π))−(21sin(3π)−41sin(32π))]=12[(0−0)−(12⋅32−14⋅32)]= \frac{1}{2} \left[ (0 - 0) - (\frac{1}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{4} \cdot \frac{\sqrt{3}}{2}) \right]=21[(0−0)−(21⋅23−41⋅23)]=12[−(34−38)]=12[−38]=−316= \frac{1}{2} \left[ -(\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{8}) \right] = \frac{1}{2} [-\frac{\sqrt{3}}{8}] = - \frac{\sqrt{3}}{16}=21[−(43−83)]=21[−83]=−1633. 最終的な答え−316-\frac{\sqrt{3}}{16}−163