与えられた二次式 $2x^2 + (4y+5)x + (y+2)(2y+1)$ を因数分解する問題です。代数学因数分解二次式多項式2025/5/71. 問題の内容与えられた二次式 2x2+(4y+5)x+(y+2)(2y+1)2x^2 + (4y+5)x + (y+2)(2y+1)2x2+(4y+5)x+(y+2)(2y+1) を因数分解する問題です。2. 解き方の手順まず、定数項 (y+2)(2y+1)(y+2)(2y+1)(y+2)(2y+1) を展開します。(y+2)(2y+1)=2y2+y+4y+2=2y2+5y+2(y+2)(2y+1) = 2y^2 + y + 4y + 2 = 2y^2 + 5y + 2(y+2)(2y+1)=2y2+y+4y+2=2y2+5y+2したがって、与えられた二次式は2x2+(4y+5)x+(2y2+5y+2)2x^2 + (4y+5)x + (2y^2 + 5y + 2)2x2+(4y+5)x+(2y2+5y+2)となります。次に、この二次式を因数分解できるかどうか検討します。2x2+(4y+5)x+(2y2+5y+2)2x^2 + (4y+5)x + (2y^2 + 5y + 2)2x2+(4y+5)x+(2y2+5y+2)=2x2+(4y+5)x+(y+2)(2y+1)= 2x^2 + (4y+5)x + (y+2)(2y+1)=2x2+(4y+5)x+(y+2)(2y+1)=(x+y+2)(2x+2y+1)= (x+y+2)(2x+2y+1)=(x+y+2)(2x+2y+1)この因数分解が正しいか確認します。(x+2y+1)(2x+y+2)=2x2+xy+2x+4xy+2y2+4y+2x+y+2(x+2y+1)(2x+y+2) = 2x^2 + xy + 2x + 4xy + 2y^2 + 4y + 2x + y + 2(x+2y+1)(2x+y+2)=2x2+xy+2x+4xy+2y2+4y+2x+y+2=2x2+2y2+5xy+4x+5y+2= 2x^2 + 2y^2 + 5xy + 4x + 5y + 2=2x2+2y2+5xy+4x+5y+2(x+y+2)(2x+2y+1)=2x2+2xy+x+2xy+2y2+y+4x+4y+2(x+y+2)(2x+2y+1) = 2x^2 + 2xy + x + 2xy + 2y^2 + y + 4x + 4y + 2(x+y+2)(2x+2y+1)=2x2+2xy+x+2xy+2y2+y+4x+4y+2=2x2+2y2+4xy+5x+5y+2= 2x^2 + 2y^2 + 4xy + 5x + 5y + 2=2x2+2y2+4xy+5x+5y+2定数項の 2y2+5y+2=(y+2)(2y+1)2y^2 + 5y + 2 = (y+2)(2y+1)2y2+5y+2=(y+2)(2y+1) をみて、2x22x^22x2 が 2x2x2x と xxx に分解されることから、(ax+by+c)(dx+ey+f)(ax+by+c)(dx+ey+f)(ax+by+c)(dx+ey+f) の形を仮定します。2x2+(4y+5)x+(y+2)(2y+1)=(2x+ay+b)(x+cy+d)2x^2 + (4y+5)x + (y+2)(2y+1) = (2x+ay+b)(x+cy+d)2x2+(4y+5)x+(y+2)(2y+1)=(2x+ay+b)(x+cy+d)2ac+a=42ac + a = 42ac+a=42d+b=52d + b = 52d+b=5bc=2bc = 2bc=2ad=1ad = 1ad=1(2x+y+2)(x+2y+1)=2x2+4xy+2x+xy+2y2+y+2x+4y+2(2x+y+2)(x+2y+1) = 2x^2 + 4xy + 2x + xy + 2y^2 + y + 2x + 4y + 2(2x+y+2)(x+2y+1)=2x2+4xy+2x+xy+2y2+y+2x+4y+2=2x2+2y2+5xy+4x+5y+2= 2x^2 + 2y^2 + 5xy + 4x + 5y + 2=2x2+2y2+5xy+4x+5y+2(x+2y+1)(2x+y+2)=2x2+xy+2x+4xy+2y2+4y+2x+y+2(x+2y+1)(2x+y+2) = 2x^2 + xy + 2x + 4xy + 2y^2 + 4y + 2x + y + 2(x+2y+1)(2x+y+2)=2x2+xy+2x+4xy+2y2+4y+2x+y+2=2x2+2y2+5xy+4x+5y+2= 2x^2 + 2y^2 + 5xy + 4x + 5y + 2=2x2+2y2+5xy+4x+5y+22x2+(4y+5)x+(2y2+5y+2)=(2x+2y+1)(x+y+2)2x^2 + (4y+5)x + (2y^2 + 5y + 2) = (2x+2y+1)(x+y+2)2x2+(4y+5)x+(2y2+5y+2)=(2x+2y+1)(x+y+2)3. 最終的な答え(2x+2y+1)(x+y+2)(2x+2y+1)(x+y+2)(2x+2y+1)(x+y+2)