図のような立体の体積を求める問題です。立体の体積を $cm^3$ で求めます。

幾何学体積直方体立体の体積
2025/5/8
はい、承知いたしました。画像に写っている図形の問題を解きます。

1. 問題の内容

図のような立体の体積を求める問題です。立体の体積を cm3cm^3 で求めます。

2. 解き方の手順

この立体は、大きな直方体から小さな直方体2つをくり抜いた形をしています。
まず、大きな直方体の体積を計算します。
大きな直方体の縦、横、高さはそれぞれ 9cm9cm, 7cm7cm, 4cm4cm です。
大きな直方体の体積は、
9×7×4=252cm39 \times 7 \times 4 = 252 cm^3
次に、くり抜かれている小さい直方体一つの体積を計算します。
小さい直方体の縦、横、高さはそれぞれ 4cm4cm, 2cm2cm, 3cm3cm です。
小さい直方体の体積は、
4×2×3=24cm34 \times 2 \times 3 = 24 cm^3
小さい直方体が2つあるので、その体積は
24×2=48cm324 \times 2 = 48 cm^3
したがって、求める立体の体積は、
25248=204cm3252 - 48 = 204 cm^3

3. 最終的な答え

204cm3204 cm^3

「幾何学」の関連問題

表の空欄に三角比 ($\sin \theta$, $\cos \theta$, $\tan \theta$) の値を、$\theta = 0^\circ, 30^\circ, 45^\circ, 60...

三角比三角関数sincostan角度
2025/5/8

三角形ABCの内角をA, B, Cとするとき、以下の等式を証明する。 (1) $\sin \frac{B+C}{2} = \cos \frac{A}{2}$ (2) $\tan \frac{A}{2}...

三角関数三角形内角証明
2025/5/8

問題は三角関数の式を計算することです。具体的には、以下の式を計算します。 $(1 - \sin \theta)(1 + \sin \theta) - \frac{1}{1 + \tan^2 \thet...

三角関数三角恒等式式変形
2025/5/8

$\theta$ は鋭角とするとき、以下の各場合について、与えられた三角比の値から、残りの2つの三角比の値を求める。 (1) $\sin \theta = \frac{1}{2}$ (2) $\cos...

三角比三角関数鋭角sincostan
2025/5/8

$\angle C = 90^\circ$ である直角三角形 $ABC$ において、$\angle A = \theta$, $AB = a$ とする。頂点 $C$ から辺 $AB$ に下ろした垂線を...

直角三角形三角比三角関数辺の長さ垂線
2025/5/8

与えられた直角三角形について、角度$\theta$に対する$\sin \theta$, $\cos \theta$, $\tan \theta$の値をそれぞれ求める。

三角比直角三角形sincostan
2025/5/8

底辺の長さが $a$ cm、高さが $b$ cm の平行四辺形の面積を求める問題です。

平行四辺形面積図形
2025/5/8

三角形ABCにおいて、辺BC上に点Pがある。三角形ABPの面積を$S_1$、三角形APCの面積を$S_2$とする。$S_1:S_2 = x:y$となるとき、その理由を文字式を使って説明する穴埋め問題を...

三角形面積図形問題
2025/5/8

正四面体の4つの面に、赤、青、黄、緑の4色を1面ずつ塗るとき、異なる塗り方は何通りあるか。

立体図形正四面体色の塗り分け場合の数回転対称性円順列
2025/5/8

図形の体積を求める問題です。2つの図形があり、ここでは2番目の図形の体積を求めます。

体積直方体図形
2025/5/8