$x = \frac{\sqrt{5}-1}{\sqrt{5}+1}$、 $y = \frac{\sqrt{5}+1}{\sqrt{5}-1}$のとき、$x^2 - xy + y^2$の値を求めよ。代数学式の計算有理化平方根式の値展開因数分解2025/3/201. 問題の内容x=5−15+1x = \frac{\sqrt{5}-1}{\sqrt{5}+1}x=5+15−1、 y=5+15−1y = \frac{\sqrt{5}+1}{\sqrt{5}-1}y=5−15+1のとき、x2−xy+y2x^2 - xy + y^2x2−xy+y2の値を求めよ。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=5−15+1=(5−1)(5−1)(5+1)(5−1)=5−25+15−1=6−254=3−52x = \frac{\sqrt{5}-1}{\sqrt{5}+1} = \frac{(\sqrt{5}-1)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} = \frac{5 - 2\sqrt{5} + 1}{5-1} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2}x=5+15−1=(5+1)(5−1)(5−1)(5−1)=5−15−25+1=46−25=23−5y=5+15−1=(5+1)(5+1)(5−1)(5+1)=5+25+15−1=6+254=3+52y = \frac{\sqrt{5}+1}{\sqrt{5}-1} = \frac{(\sqrt{5}+1)(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)} = \frac{5 + 2\sqrt{5} + 1}{5-1} = \frac{6 + 2\sqrt{5}}{4} = \frac{3 + \sqrt{5}}{2}y=5−15+1=(5−1)(5+1)(5+1)(5+1)=5−15+25+1=46+25=23+5次に、x+yx + yx+y と xyxyxy を計算します。x+y=3−52+3+52=3−5+3+52=62=3x + y = \frac{3 - \sqrt{5}}{2} + \frac{3 + \sqrt{5}}{2} = \frac{3 - \sqrt{5} + 3 + \sqrt{5}}{2} = \frac{6}{2} = 3x+y=23−5+23+5=23−5+3+5=26=3xy=3−52×3+52=9−54=44=1xy = \frac{3 - \sqrt{5}}{2} \times \frac{3 + \sqrt{5}}{2} = \frac{9 - 5}{4} = \frac{4}{4} = 1xy=23−5×23+5=49−5=44=1最後に、x2−xy+y2x^2 - xy + y^2x2−xy+y2 を (x+y)2(x+y)^2(x+y)2 と xyxyxy を用いて表します。x2−xy+y2=x2+2xy+y2−3xy=(x+y)2−3xyx^2 - xy + y^2 = x^2 + 2xy + y^2 - 3xy = (x+y)^2 - 3xyx2−xy+y2=x2+2xy+y2−3xy=(x+y)2−3xyここで、x+y=3x+y=3x+y=3、xy=1xy=1xy=1を代入します。x2−xy+y2=(3)2−3(1)=9−3=6x^2 - xy + y^2 = (3)^2 - 3(1) = 9 - 3 = 6x2−xy+y2=(3)2−3(1)=9−3=63. 最終的な答え6