$\int_{1}^{2} \sin(\frac{2}{3}\pi t + \frac{\pi}{6}) dt$ を計算します。解析学定積分三角関数積分2025/5/111. 問題の内容∫12sin(23πt+π6)dt\int_{1}^{2} \sin(\frac{2}{3}\pi t + \frac{\pi}{6}) dt∫12sin(32πt+6π)dt を計算します。2. 解き方の手順まず、積分を実行します。sin(ax+b)\sin(ax + b)sin(ax+b) の積分は −1acos(ax+b)+C-\frac{1}{a}\cos(ax + b) + C−a1cos(ax+b)+C です。したがって、∫sin(23πt+π6)dt=−32πcos(23πt+π6)+C\int \sin(\frac{2}{3}\pi t + \frac{\pi}{6}) dt = -\frac{3}{2\pi} \cos(\frac{2}{3}\pi t + \frac{\pi}{6}) + C∫sin(32πt+6π)dt=−2π3cos(32πt+6π)+C次に、定積分を計算します。∫12sin(23πt+π6)dt=[−32πcos(23πt+π6)]12\int_{1}^{2} \sin(\frac{2}{3}\pi t + \frac{\pi}{6}) dt = [-\frac{3}{2\pi} \cos(\frac{2}{3}\pi t + \frac{\pi}{6})]_{1}^{2}∫12sin(32πt+6π)dt=[−2π3cos(32πt+6π)]12=−32πcos(23π(2)+π6)−(−32πcos(23π(1)+π6))= -\frac{3}{2\pi} \cos(\frac{2}{3}\pi (2) + \frac{\pi}{6}) - (-\frac{3}{2\pi} \cos(\frac{2}{3}\pi (1) + \frac{\pi}{6}))=−2π3cos(32π(2)+6π)−(−2π3cos(32π(1)+6π))=−32πcos(4π3+π6)+32πcos(2π3+π6)= -\frac{3}{2\pi} \cos(\frac{4\pi}{3} + \frac{\pi}{6}) + \frac{3}{2\pi} \cos(\frac{2\pi}{3} + \frac{\pi}{6})=−2π3cos(34π+6π)+2π3cos(32π+6π)=−32πcos(8π6+π6)+32πcos(4π6+π6)= -\frac{3}{2\pi} \cos(\frac{8\pi}{6} + \frac{\pi}{6}) + \frac{3}{2\pi} \cos(\frac{4\pi}{6} + \frac{\pi}{6})=−2π3cos(68π+6π)+2π3cos(64π+6π)=−32πcos(9π6)+32πcos(5π6)= -\frac{3}{2\pi} \cos(\frac{9\pi}{6}) + \frac{3}{2\pi} \cos(\frac{5\pi}{6})=−2π3cos(69π)+2π3cos(65π)=−32πcos(3π2)+32πcos(5π6)= -\frac{3}{2\pi} \cos(\frac{3\pi}{2}) + \frac{3}{2\pi} \cos(\frac{5\pi}{6})=−2π3cos(23π)+2π3cos(65π)cos(3π2)=0\cos(\frac{3\pi}{2}) = 0cos(23π)=0 なので、=−32π⋅0+32πcos(5π6)= -\frac{3}{2\pi} \cdot 0 + \frac{3}{2\pi} \cos(\frac{5\pi}{6})=−2π3⋅0+2π3cos(65π)=32πcos(5π6)= \frac{3}{2\pi} \cos(\frac{5\pi}{6})=2π3cos(65π)cos(5π6)=−32\cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}cos(65π)=−23 なので、=32π(−32)= \frac{3}{2\pi} (-\frac{\sqrt{3}}{2})=2π3(−23)=−334π= -\frac{3\sqrt{3}}{4\pi}=−4π333. 最終的な答え−334π-\frac{3\sqrt{3}}{4\pi}−4π33