対数微分法を用いて、以下の関数を微分する。 (1) $y = x^{x^2}$ ($x > 0$) (2) $y = \frac{(x-1)^2(x+2)^3}{(x+1)^4}$解析学微分対数微分法関数の微分2025/5/111. 問題の内容対数微分法を用いて、以下の関数を微分する。(1) y=xx2y = x^{x^2}y=xx2 (x>0x > 0x>0)(2) y=(x−1)2(x+2)3(x+1)4y = \frac{(x-1)^2(x+2)^3}{(x+1)^4}y=(x+1)4(x−1)2(x+2)32. 解き方の手順(1) y=xx2y = x^{x^2}y=xx2 の場合:両辺の自然対数をとる。lny=ln(xx2)=x2lnx\ln y = \ln (x^{x^2}) = x^2 \ln xlny=ln(xx2)=x2lnx両辺を xxx で微分する。1ydydx=2xlnx+x2⋅1x=2xlnx+x\frac{1}{y} \frac{dy}{dx} = 2x \ln x + x^2 \cdot \frac{1}{x} = 2x \ln x + xy1dxdy=2xlnx+x2⋅x1=2xlnx+xdydx=y(2xlnx+x)=xx2(2xlnx+x)=xx2x(2lnx+1)=xx2+1(2lnx+1)\frac{dy}{dx} = y (2x \ln x + x) = x^{x^2} (2x \ln x + x) = x^{x^2} x (2 \ln x + 1) = x^{x^2 + 1}(2\ln x + 1)dxdy=y(2xlnx+x)=xx2(2xlnx+x)=xx2x(2lnx+1)=xx2+1(2lnx+1)(2) y=(x−1)2(x+2)3(x+1)4y = \frac{(x-1)^2(x+2)^3}{(x+1)^4}y=(x+1)4(x−1)2(x+2)3 の場合:両辺の自然対数をとる。lny=ln(x−1)2(x+2)3(x+1)4=ln(x−1)2+ln(x+2)3−ln(x+1)4=2ln(x−1)+3ln(x+2)−4ln(x+1)\ln y = \ln \frac{(x-1)^2(x+2)^3}{(x+1)^4} = \ln (x-1)^2 + \ln (x+2)^3 - \ln (x+1)^4 = 2 \ln (x-1) + 3 \ln (x+2) - 4 \ln (x+1)lny=ln(x+1)4(x−1)2(x+2)3=ln(x−1)2+ln(x+2)3−ln(x+1)4=2ln(x−1)+3ln(x+2)−4ln(x+1)両辺を xxx で微分する。1ydydx=2x−1+3x+2−4x+1\frac{1}{y} \frac{dy}{dx} = \frac{2}{x-1} + \frac{3}{x+2} - \frac{4}{x+1}y1dxdy=x−12+x+23−x+14dydx=y(2x−1+3x+2−4x+1)=(x−1)2(x+2)3(x+1)4(2x−1+3x+2−4x+1)\frac{dy}{dx} = y \left(\frac{2}{x-1} + \frac{3}{x+2} - \frac{4}{x+1}\right) = \frac{(x-1)^2(x+2)^3}{(x+1)^4} \left(\frac{2}{x-1} + \frac{3}{x+2} - \frac{4}{x+1}\right)dxdy=y(x−12+x+23−x+14)=(x+1)4(x−1)2(x+2)3(x−12+x+23−x+14)dydx=(x−1)2(x+2)3(x+1)4(2(x+2)(x+1)+3(x−1)(x+1)−4(x−1)(x+2)(x−1)(x+2)(x+1))\frac{dy}{dx} = \frac{(x-1)^2(x+2)^3}{(x+1)^4} \left(\frac{2(x+2)(x+1) + 3(x-1)(x+1) - 4(x-1)(x+2)}{(x-1)(x+2)(x+1)}\right)dxdy=(x+1)4(x−1)2(x+2)3((x−1)(x+2)(x+1)2(x+2)(x+1)+3(x−1)(x+1)−4(x−1)(x+2))dydx=(x−1)(x+2)2(x+1)5[2(x2+3x+2)+3(x2−1)−4(x2+x−2)]\frac{dy}{dx} = \frac{(x-1)(x+2)^2}{(x+1)^5} [2(x^2 + 3x + 2) + 3(x^2 - 1) - 4(x^2 + x - 2)]dxdy=(x+1)5(x−1)(x+2)2[2(x2+3x+2)+3(x2−1)−4(x2+x−2)]dydx=(x−1)(x+2)2(x+1)5[2x2+6x+4+3x2−3−4x2−4x+8]\frac{dy}{dx} = \frac{(x-1)(x+2)^2}{(x+1)^5} [2x^2 + 6x + 4 + 3x^2 - 3 - 4x^2 - 4x + 8] dxdy=(x+1)5(x−1)(x+2)2[2x2+6x+4+3x2−3−4x2−4x+8]dydx=(x−1)(x+2)2(x+1)5[x2+2x+9]\frac{dy}{dx} = \frac{(x-1)(x+2)^2}{(x+1)^5} [x^2 + 2x + 9]dxdy=(x+1)5(x−1)(x+2)2[x2+2x+9]3. 最終的な答え(1) dydx=xx2+1(2lnx+1)\frac{dy}{dx} = x^{x^2+1} (2 \ln x + 1)dxdy=xx2+1(2lnx+1)(2) dydx=(x−1)(x+2)2(x2+2x+9)(x+1)5\frac{dy}{dx} = \frac{(x-1)(x+2)^2(x^2+2x+9)}{(x+1)^5}dxdy=(x+1)5(x−1)(x+2)2(x2+2x+9)