A, B, C, D, E, F の6人の中から5人の委員を選ぶとき、選び方は全部で何通りあるか。

確率論・統計学組み合わせ場合の数順列
2025/5/11

1. 問題の内容

A, B, C, D, E, F の6人の中から5人の委員を選ぶとき、選び方は全部で何通りあるか。

2. 解き方の手順

この問題は組み合わせの問題です。6人の中から5人を選ぶ組み合わせの数を計算します。
組み合わせの公式は以下の通りです。
nCr=n!r!(nr)!_nC_r = \frac{n!}{r!(n-r)!}
ここで、nn は全体の人数(この場合は6人)、rr は選ぶ人数(この場合は5人)です。
したがって、
6C5=6!5!(65)!=6!5!1!=6×5×4×3×2×1(5×4×3×2×1)(1)=61=6_6C_5 = \frac{6!}{5!(6-5)!} = \frac{6!}{5!1!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(5 \times 4 \times 3 \times 2 \times 1)(1)} = \frac{6}{1} = 6
あるいは、6人から5人を選ぶことは、6人から選ばない1人を選ぶことと同じです。6人から1人を選ばない選び方は6通りです。

3. 最終的な答え

6通り

「確率論・統計学」の関連問題

問題は2つあります。 問題2:1つのサイコロを投げるとき、次の確率を求めます。 (1) 3の目が出る確率 (2) 4以下の目が出る確率 (3) 5以上の目が出る確率 (4) 4の約数の目が出る確率 問...

確率サイコロカード事象
2025/5/14

問題1:赤玉2個と白玉3個が入った袋から玉を1個取り出すとき、(1)赤玉が出る確率と(2)白玉が出る確率を求める。 問題2:1個のさいころを投げるとき、(1)3の目が出る確率と(2)4以下の目が出る確...

確率確率計算事象サイコロ
2025/5/14

箱の中に白色のカード1, 2, 3、赤色のカード1, 2、青色のカード1の計6枚が入っている。この箱から1枚のカードを取り出し、書かれた数を記録し、カードを箱に戻すことを2回繰り返す。 (i) 記録さ...

確率確率分布組み合わせ
2025/5/14

男子6人、女子4人の中から4人の委員を選ぶときの選び方の数を、以下の条件で求めます。 (1) すべての選び方 (2) 男子の委員2人、女子の委員2人を選ぶ (3) 女子が少なくとも1人選ばれる (4)...

組み合わせ場合の数順列組合せ
2025/5/14

50人にAとBの2問のクイズを出題したところ、Aを正解した人は27人、Bを正解した人は13人、AもBも正解した人は4人だった。 (1) AもBも正解しなかった人は何人か。 (2) Aだけ正解し、Bは正...

集合包除原理確率統計
2025/5/14

男子4人、女子5人が1列に並ぶときの、以下の並び方の総数を求める問題です。 (1) 女子5人が続いて並ぶ場合 (2) 男子は男子、女子は女子で、それぞれ続いて並ぶ場合 (3) 両端が男子である場合 (...

順列組み合わせ場合の数
2025/5/14

AとBが試合を行い、先に3勝した方を優勝とする。試合数は最大で5試合までで、引き分けはない。Aが1試合で勝つ確率は $\frac{1}{2}$ である。行われた試合数 $X$ の確率分布表を完成させる...

確率確率分布組み合わせ二項分布
2025/5/14

AとBが試合を行い、先に3勝した方が優勝となる。行われた試合の数をXとする。Aが試合に勝つ確率は1/2で、引き分けはないものとする。Xの確率分布表が与えられており、X=3, 4の場合の確率がそれぞれ1...

確率確率分布二項分布組み合わせ
2025/5/14

連続型確率変数 $X$ の確率密度関数が次のように与えられています。 $f(x) = \begin{cases} \frac{x}{2} & (0 \leq x \leq 2) \\ 0 & (x <...

確率密度関数期待値分散連続型確率変数
2025/5/14

ある会社で3つの工場A, B, Cで同じ製品を作っている。A工場では全体の60%, B工場では全体の30%, C工場では全体の10%を生産している。また、それぞれの工場で生じる不良品の割合は、A工場2...

確率ベイズの定理条件付き確率
2025/5/14