$(\sqrt{6} + 2\sqrt{2})(3\sqrt{6} - \sqrt{2})$ を計算しなさい。算数平方根計算式の展開無理数2025/5/111. 問題の内容(6+22)(36−2)(\sqrt{6} + 2\sqrt{2})(3\sqrt{6} - \sqrt{2})(6+22)(36−2) を計算しなさい。2. 解き方の手順与えられた式を展開します。(6+22)(36−2)(\sqrt{6} + 2\sqrt{2})(3\sqrt{6} - \sqrt{2})(6+22)(36−2)=6⋅36−6⋅2+22⋅36−22⋅2= \sqrt{6} \cdot 3\sqrt{6} - \sqrt{6} \cdot \sqrt{2} + 2\sqrt{2} \cdot 3\sqrt{6} - 2\sqrt{2} \cdot \sqrt{2}=6⋅36−6⋅2+22⋅36−22⋅2=3(6)2−12+612−2(2)2= 3(\sqrt{6})^2 - \sqrt{12} + 6\sqrt{12} - 2(\sqrt{2})^2=3(6)2−12+612−2(2)2=3⋅6−4⋅3+64⋅3−2⋅2= 3 \cdot 6 - \sqrt{4 \cdot 3} + 6\sqrt{4 \cdot 3} - 2 \cdot 2=3⋅6−4⋅3+64⋅3−2⋅2=18−23+6⋅23−4= 18 - 2\sqrt{3} + 6 \cdot 2\sqrt{3} - 4=18−23+6⋅23−4=18−23+123−4= 18 - 2\sqrt{3} + 12\sqrt{3} - 4=18−23+123−4=(18−4)+(−23+123)= (18 - 4) + (-2\sqrt{3} + 12\sqrt{3})=(18−4)+(−23+123)=14+103= 14 + 10\sqrt{3}=14+1033. 最終的な答え14+10314 + 10\sqrt{3}14+103