6人の生徒の中から3人を選び、横一列に並べる場合の数を求める問題です。

確率論・統計学順列組み合わせ場合の数
2025/5/12

1. 問題の内容

6人の生徒の中から3人を選び、横一列に並べる場合の数を求める問題です。

2. 解き方の手順

この問題は順列の問題です。
6人の中から3人を選んで並べる順列は、P(6, 3)で表されます。
順列の公式は、
P(n,r)=n!(nr)!P(n, r) = \frac{n!}{(n-r)!}
ここで、n=6n = 6r=3r = 3なので、
P(6,3)=6!(63)!=6!3!P(6, 3) = \frac{6!}{(6-3)!} = \frac{6!}{3!}
6!=6×5×4×3×2×1=7206! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720
3!=3×2×1=63! = 3 \times 2 \times 1 = 6
P(6,3)=7206=120P(6, 3) = \frac{720}{6} = 120
したがって、6人の中から3人を選んで横一列に並べる方法は120通りです。
あるいは、
1番目の席に座れるのは6人。
2番目の席に座れるのは残りの5人。
3番目の席に座れるのは残りの4人。
なので、
6×5×4=1206 \times 5 \times 4 = 120
でも求められます。

3. 最終的な答え

120通り

「確率論・統計学」の関連問題

問題41:20個の製品の中に4個の不良品がある。この中から3個を同時に取り出すとき、不良品が2個以上含まれる確率を求める。 問題42:2個のサイコロを同時に投げるとき、目の和が5の倍数になる確率を求め...

確率組み合わせ事象
2025/5/14

1から50までの番号が付けられた50枚のカードから1枚を引くとき、次の事象のうち互いに排反なものはどれとどれか。 * A: 6の倍数の番号が出る * B: 偶数の番号が出る * C: 7の...

確率排反事象約数倍数
2025/5/14

1個のサイコロを投げるとき、事象Aを「奇数の目が出る」、事象Bを「5以上の目が出る」とします。このとき、積事象 $A \cap B$ の確率と、和事象 $A \cup B$ の確率をそれぞれ求めます。

確率確率変数事象積事象和事象
2025/5/14

袋の中に白玉と赤玉が入っている状況で、以下の事象が起こる確率を求めます。 (1) 白玉2個と赤玉1個が出る確率 (2) 3個とも白玉が出る確率 ただし、例題11の内容が書かれていないため、白玉と赤玉の...

確率組み合わせ
2025/5/14

問題35:2枚の硬貨を同時に投げたとき、表と裏が1枚ずつ出る確率を求めます。 問題36:2個のサイコロを同時に投げたとき、出る目の和が最も大きい確率となるのはいくつであるか、またその確率を求めます。

確率硬貨サイコロ確率分布
2025/5/14

1から50までの番号が書かれた50枚のカードから1枚を引くとき、そのカードの番号が8の倍数である確率を求めよ。

確率場合の数分数約分
2025/5/14

硬貨を $n$ 回投げるとき、表の出る相対度数を $R$ とする。$n=100$ の場合に、$P(|R-\frac{1}{2}| \leq 0.05)$ の値を、巻末の正規分布表を用いて求めよ。

確率二項分布正規分布相対度数統計的推測
2025/5/14

袋の中に白玉2個、赤玉3個が入っている。この袋から同時に2個の玉を取り出すとき、次の事象を集合で表す。 (1) 全事象 (2) 白玉1個と赤玉1個を取り出す事象

確率組み合わせ事象全事象場合の数
2025/5/14

12回の試行において、事象A「表が1枚も出ない」と事象B「少なくとも1枚は表が出る」を、全体集合Uの部分集合として表す。

確率事象集合試行
2025/5/14

袋の中に白玉2個と赤玉3個が入っている。この袋から同時に玉を2個取り出す。 (1) 全事象を集合で表す。 (2) 白玉1個と赤玉1個を取り出す事象を集合で表す。

確率事象集合玉取り出し
2025/5/14