$x+y+z = xy+yz+zx = 2\sqrt{2} + 1$ かつ $xyz = 1$ のとき、$\frac{x}{yz} + \frac{y}{zx} + \frac{z}{xy}$ の値を求める問題です。代数学対称式因数分解式の展開連立方程式2025/5/121. 問題の内容x+y+z=xy+yz+zx=22+1x+y+z = xy+yz+zx = 2\sqrt{2} + 1x+y+z=xy+yz+zx=22+1 かつ xyz=1xyz = 1xyz=1 のとき、xyz+yzx+zxy\frac{x}{yz} + \frac{y}{zx} + \frac{z}{xy}yzx+zxy+xyz の値を求める問題です。2. 解き方の手順まず、求めたい式を変形します。xyz+yzx+zxy=x2xyz+y2xyz+z2xyz\frac{x}{yz} + \frac{y}{zx} + \frac{z}{xy} = \frac{x^2}{xyz} + \frac{y^2}{xyz} + \frac{z^2}{xyz}yzx+zxy+xyz=xyzx2+xyzy2+xyzz2xyz=1xyz = 1xyz=1 より、x2xyz+y2xyz+z2xyz=x2+y2+z2\frac{x^2}{xyz} + \frac{y^2}{xyz} + \frac{z^2}{xyz} = x^2 + y^2 + z^2xyzx2+xyzy2+xyzz2=x2+y2+z2次に、x2+y2+z2x^2 + y^2 + z^2x2+y2+z2 を (x+y+z)2(x+y+z)^2(x+y+z)2 と (xy+yz+zx)(xy+yz+zx)(xy+yz+zx) を使って表します。(x+y+z)2=x2+y2+z2+2(xy+yz+zx)(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy+yz+zx)(x+y+z)2=x2+y2+z2+2(xy+yz+zx)したがって、x2+y2+z2=(x+y+z)2−2(xy+yz+zx)x^2 + y^2 + z^2 = (x+y+z)^2 - 2(xy+yz+zx)x2+y2+z2=(x+y+z)2−2(xy+yz+zx)問題文より、x+y+z=xy+yz+zx=22+1x+y+z = xy+yz+zx = 2\sqrt{2} + 1x+y+z=xy+yz+zx=22+1 なので、x2+y2+z2=(22+1)2−2(22+1)x^2 + y^2 + z^2 = (2\sqrt{2} + 1)^2 - 2(2\sqrt{2} + 1)x2+y2+z2=(22+1)2−2(22+1)(22+1)2=(22)2+2(22)(1)+12=8+42+1=9+42(2\sqrt{2} + 1)^2 = (2\sqrt{2})^2 + 2(2\sqrt{2})(1) + 1^2 = 8 + 4\sqrt{2} + 1 = 9 + 4\sqrt{2}(22+1)2=(22)2+2(22)(1)+12=8+42+1=9+422(22+1)=42+22(2\sqrt{2} + 1) = 4\sqrt{2} + 22(22+1)=42+2x2+y2+z2=(9+42)−(42+2)=9+42−42−2=7x^2 + y^2 + z^2 = (9 + 4\sqrt{2}) - (4\sqrt{2} + 2) = 9 + 4\sqrt{2} - 4\sqrt{2} - 2 = 7x2+y2+z2=(9+42)−(42+2)=9+42−42−2=7xyz+yzx+zxy=x2+y2+z2=7\frac{x}{yz} + \frac{y}{zx} + \frac{z}{xy} = x^2 + y^2 + z^2 = 7yzx+zxy+xyz=x2+y2+z2=73. 最終的な答え7